Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 135(3): 250-257, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650080

RESUMO

Hybrid biological-inorganic (HBI) systems comprising inorganic water-splitting catalysts and aerobic hydrogen-oxidizing bacteria (HOB) have previously been used for CO2 conversion. In order to identify new biocatalysts for CO2 conversion, the present study used an HBI system to enrich HOB directly from environmental samples. Three sediment samples (from a brackish water pond, a beach, and a tide pool) and two activated sludge samples (from two separate sewage plants) were inoculated into HBI systems using a cobalt phosphorus (Co-P) alloy and cobalt phosphate (CoPi) as inorganic catalysts with a fixed voltage of 2.0 V. The gas composition of the reactor headspaces and electric current were monitored. An aliquot of the reactor medium was transferred to a new reactor when significant consumption of H2 and CO2 was detected. This process was repeated twice (with three reactors in operation for each sample) to enrich HOB. Increased biomass concomitant with increased H2 and CO2 consumption was observed in the third reactor, indicating enrichment of HOB. 16S rRNA gene amplicon sequencing demonstrated enrichment of sequences related to HOB (including bacteria from Mycobacterium, Hydrogenophaga, and Xanthobacter genera) over successive sub-cultures. Finally, four different HOB belonging to the Mycobacterium, Hydrogenophaga, Xanthobacter, and Acidovorax genera were isolated from reactor media, representing potential candidates as HBI system biocatalysts.


Assuntos
Dióxido de Carbono , Hidrogênio , RNA Ribossômico 16S/genética , Oxirredução , Bactérias , Bactérias Aeróbias , Reatores Biológicos , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA