Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 90(1): 1-12, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17183070

RESUMO

The pH of cheese is an important attribute that influences its quality. Substantial changes in cheese pH are often observed during ripening. A combined effect of calcium, phosphorus, residual lactose, and salt-to-moisture ratio (S/M) of the cheese on the changes in cheese pH during ripening was investigated. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. All the cheeses were salted at a pH of 5.4, pressed for 5 h, and then ripened at 6 to 8 degrees C. The pH of the salted curds before pressing and the cheeses during 48 wk of ripening was measured. Also, cheeses were analyzed for water-soluble Ca and P, organic P, and bound inorganic P during ripening. Changes in organic acids' concentration and shifts in the distribution of Ca and P between different forms were studied in relation to changes in pH. Cheeses with low S/M exhibited a larger increase in acid production during ripening compared with high S/M cheeses. Cheeses with the highest concentration of bound inorganic P exhibited the highest pH, whereas cheeses with the lowest concentration of bound inorganic P exhibited the lowest pH among the 8 treatments. Although conversion of lactose to short-chain, water-soluble organic acids decreased cheese pH, bound inorganic phosphate buffered the changes in cheese pH. Production of acid in excess of the buffering capacity (which was the case in low Ca and P and low S/M treatments) led to a low pH, whereas solubilization of bound inorganic P in excess to acid production (which was the case in high Ca and P and high S/M treatments) led to an increase in pH. However, for cheeses with high Ca and P and low S/M, changes in cheese pH were influenced by the level of residual lactose. Hence, pH changes in Cheddar cheese can be modulated by a concomitant control on the amount and state of Ca and P, level of residual lactose, and S/M of the cheese.


Assuntos
Cálcio/análise , Queijo/análise , Queijo/normas , Lactose/análise , Fósforo/análise , Sais/análise , Ácidos/química , Manipulação de Alimentos , Concentração de Íons de Hidrogênio , Solubilidade , Fatores de Tempo , Água/análise
2.
J Dairy Sci ; 89(6): 1926-37, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16702256

RESUMO

The methods available for measuring organic P and bound Ca in cheese are either cumbersome or involve dilution of the cheese. Dilution of the cheese can lead to erroneous results, particularly in the case of bound Ca. Hence, the objective of this study was to evaluate the feasibility of Fourier transform infrared (FTIR) spectroscopy for direct measurement of organic P and bound Ca in Cheddar cheese. Two hundred sixteen samples of cheese were analyzed for protein-bound organic P, bound Ca using a water-extraction based method, and buffering curves. Additionally, the infrared spectra of the cheeses were collected between 4,000 and 650 cm(-1), at a resolution of 4 cm(-1), and 256 scans per sample. The spectral shifts in the infrared region from 1,050 to 900 cm(-1), in addition to the measured concentrations of organic P, bound Ca, and buffering peak area at pH 5.1, were used to develop calibration models using partial least squares (PLS) regression analysis. The spectral region of 956 to 946 cm(-1) correlated with the measured concentrations of organic P and the overall PLS model had a correlation (R2) of 0.76 between the predicted and measured concentrations. The spectral region at approximately 980 cm(-1) was correlated with the measured concentrations of bound Ca, and the overall PLS model had a correlation (R2) of 0.70 between the predicted and measured concentrations. A similar spectral region at approximately 980 cm(-1) was also correlated with the measured buffering peak areas and the overall PLS model had a correlation (R2) of 0.64 between the predicted and measured peak areas. A linear regression analysis between the bound Ca and buffering peak area demonstrated that bound Ca was correlated (R2 = 0.73) with buffering peak area. This study demonstrates that FTIR can be used to measure organic P in cheeses. It also has the potential to be used for measuring bound Ca in undiluted cheeses, and for prediction of the buffering capacity of cheese.


Assuntos
Cálcio/análise , Queijo/análise , Fósforo/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Soluções Tampão , Cálcio/metabolismo , Caseínas/metabolismo , Concentração de Íons de Hidrogênio , Fósforo/metabolismo , Ligação Proteica , Análise de Regressão
3.
J Dairy Sci ; 89(3): 938-50, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507688

RESUMO

The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.


Assuntos
Cálcio/análise , Queijo/análise , Lactose/análise , Fósforo/análise , Sais/análise , Água/análise , Soluções Tampão , Fosfatos de Cálcio/análise , Durapatita/análise , Concentração de Íons de Hidrogênio , Magnésio/análise , Controle de Qualidade , Sódio/análise
4.
J Dairy Sci ; 89(2): 429-43, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428613

RESUMO

Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during early ripening, whereas during later ripening, a substantial increase was observed. A gradual decrease in orotic acid and a gradual increase in pyruvic acid content of the cheeses were observed during 12 mo of ripening. In contrast, acetic acid did not show a particular trend, indicating its role as an intermediate in a biochemical pathway, rather than a final product.


Assuntos
Cálcio/análise , Carboidratos/análise , Ácidos Carboxílicos/análise , Queijo/análise , Lactose/análise , Fósforo/análise , Ácido Acético/análise , Ácido Butírico/análise , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/análise , Fermentação , Manipulação de Alimentos/métodos , Formiatos/análise , Galactose/análise , Lactococcus/metabolismo , Ácido Orótico/análise , Ácido Pirúvico/análise , Controle de Qualidade , Cloreto de Sódio/análise , Solubilidade , Fatores de Tempo , Ácido Úrico/análise , Água/análise
5.
J Dairy Sci ; 89(2): 420-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428612

RESUMO

Eight Cheddar cheeses with 2 levels of calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) were manufactured. All cheeses were made using a stirred-curd procedure and were replicated 3 times. Treatments with a high level of Ca and P were produced by setting the milk and drawing the whey at a higher pH (6.6 and 6.3, respectively) compared with the treatments with a low level of Ca and P (pH of 6.2 and 5.7, respectively). The lactose content in the cheeses was varied by adding lactose (2.5% by weight of milk) to the milk for high lactose cheeses, and washing the curd for low lactose cheeses. The difference in S/M was obtained by dividing the curds into halves, weighing each half, and salting at 3.5 and 2.25% of the weight of the curd for high and low S/M, respectively. All cheeses were salted at a pH of 5.4. Modifications in cheese-making protocols produced cheeses with desired differences in Ca and P, residual lactose, and S/M. Average Ca and P in the high Ca and P cheeses was 0.68 and 0.48%, respectively, vs. 0.53 and 0.41% for the low Ca and P cheeses. Average lactose content of the high lactose treatments at d 1 was 1.48% compared with 0.30% for the low lactose treatments. The S/M for the high and low S/M cheeses was 6.68 and 4.77%, respectively. Mean moisture, fat, and protein content of the cheeses ranged from 32.07 to 37.57%, 33.32 to 35.93%, and 24.46 to 26.40%, respectively. The moisture content differed among the treatments, whereas fat and protein content on dry basis was similar.


Assuntos
Cálcio/análise , Queijo/análise , Lactose/análise , Fósforo/análise , Cloreto de Sódio/análise , Água/análise , Animais , Gorduras/análise , Fermentação , Manipulação de Alimentos/métodos , Glicólise , Concentração de Íons de Hidrogênio , Leite/química , Proteínas do Leite/análise , Controle de Qualidade
6.
J Dairy Sci ; 89(2): 444-53, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428614

RESUMO

Proteolysis in cheese is influenced by the state of proteins (protein-calcium-phosphate interactions), level of indigenous milk enzymes (plasmin), externally added milk-clotting enzymes (chymosin), and endogenous and exogenous enzymes from starter and non-starter lactic acid bacteria (NSLAB). The objective of this study was to determine how different levels of calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) in cheese influence proteolysis during ripening. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), 2 levels of lactose at pressing (2.4 vs. 0.78%), and 2 levels of S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for changes in pH 4.6-soluble N, and starter and NSLAB counts during 48 wk of ripening. Cheeses at d 1 were also analyzed for residual chymosin, plasmin, and plasminogen activity. A significant increase in soluble N was observed during ripening for all the treatments. Cheeses with low Ca and P, low lactose, and low S/M treatments exhibited higher levels of proteolysis as compared to their corresponding high treatments. Differences in the rate of proteolysis for cheeses with different levels of Ca and P might be due to changes in protein conformation and differences in residual chymosin in the cheeses. Cheeses with low Ca and P were manufactured by lowering the pH at set and drain, which led to higher chymosin retention in cheeses with low Ca and P compared with high Ca and P. Differences in proteolysis between treatments with different levels of lactose were also partly attributed to residual chymosin activity. In all treatments, a major fraction of plasmin existed as plasminogen, indicating minimal contribution of plasmin to proteolysis in Cheddar cheeses. The number of starter bacteria, in all treatments, decreased significantly during ripening. However, the decrease was larger in the case of high S/M treatments compared with low S/M treatments. In contrast, the number of NSLAB increased during ripening, and low S/M cheeses had higher counts compared with high S/M cheeses. The differences in proteolysis due to S/M were partially attributed to changes in protein conformation or bacterial proteolytic activity.


Assuntos
Cálcio/análise , Queijo/análise , Lactose/análise , Peptídeo Hidrolases/metabolismo , Fósforo/análise , Cloreto de Sódio/análise , Catepsina D/metabolismo , Quimosina/metabolismo , Fibrinolisina/metabolismo , Manipulação de Alimentos/métodos , Concentração de Íons de Hidrogênio , Lactococcus/metabolismo , Plasminogênio/metabolismo , Controle de Qualidade , Solubilidade , Fatores de Tempo , Água/análise
7.
J Dairy Sci ; 85(12): 3173-81, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12512590

RESUMO

The objective of this study was to develop methods for the estimation and fortification of vitamin D3 in pasteurized Process cheese. Vitamin D3 was estimated using alkaline saponification at 70 degrees C for 30 min, followed by extraction with petroleum ether:diethyl ether (90:10 vol/vol) and HPLC. The retention time for vitamin D3 was approximately 9 min. A standard curve with a correlation coefficient of 0.972 was prepared for quantification of vitamin D3 in unknown samples. In the second phase of the study, pasteurized Process cheeses fortified with commercial water- or fat-dispersible forms of vitamin D3 at a level of 100 IU per serving (28 g) were manufactured. There was no loss of vitamin D3 during Process cheese manufacture, and the vitamin was uniformly distributed. No losses of the vitamin occurred during storage of the fortified cheeses over a 9-mo period at 21 to 29 degrees C and 4 to 6 degrees C. There was an approximately 25 to 30% loss of the vitamin when cheeses were heated for 5 min in an oven maintained at 232 degrees C. Added vitamin D3 did not impart any off flavors to the Process cheeses as determined by sensory analysis. There were no differences between the water- and fat-dispersible forms of the vitamin in the parameters measured in fortified cheeses.


Assuntos
Queijo/análise , Colecalciferol/administração & dosagem , Colecalciferol/análise , Alimentos Fortificados , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Conservação de Alimentos , Temperatura Alta , Humanos , Saponinas , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA