Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 366(1): 71-83, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26095603

RESUMO

Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.


Assuntos
Melanoma/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Invasividade Neoplásica , Fenótipo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/farmacologia
2.
Cancer Lett ; 344(1): 28-39, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24215866

RESUMO

Tumor cells have the ability to exploit stromal cells to facilitate metastasis. By using malignant melanoma as a model, we show that the stroma adjacent to metastatic lesions is enriched in the known metastasis-promoting protein S100A4. S100A4 stimulates cancer cells to secrete paracrine factors, such as inflammatory cytokines IL8, CCL2 and SAA, which activate stromal cells (endothelial cells and monocytes) so that they acquire tumor-supportive properties. Our data establishes S100A4 as an inducer of a cytokine network enabling tumor cells to engage angiogenic and inflammatory stromal cells, which might contribute to pro-metastatic activity of S100A4.


Assuntos
Melanoma/metabolismo , Proteínas S100/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Reação em Cadeia da Polimerase em Tempo Real , Receptor Cross-Talk/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100 , Células Estromais/patologia
3.
Oncoscience ; 1(1): 82-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593989

RESUMO

The brain offers a unique microenvironment that plays an important role in the establishment and progression of metastasis. However, the molecular determinants that promote development of melanoma brain metastases are largely unknown. Utilizing two species of immune-compromised animals, with in vivo cultivated metastatic tissues along with their corresponding host tissues in a metastasis model, we here identify molecular events associated with melanoma brain metastases. We find that the transcriptional changes in the melanoma cells, as induced by the brain-microenvironment in both host species, reveal the opportunistic nature of melanoma in this biological context in rewiring the molecular framework of key molecular players with their associated biological processes. Specifically, we identify the existence of a neuron-like melanoma phenotype, which includes synaptic characteristics and a neurotransmission-like circuit involving glutamate. Regulation of gene transcription and neuron-like plasticity by Ca(2+)-dependent signaling appear to occur through glutamate receptor activation. The brain-adaptive phenotype was found as more prominent in the early metastatic growth phases compared to a later phase, emphasizing a temporal requirement of critical events in the successful colonization of the brain. Analysis of the host tissue uncovered a cooperative inflammatory microenvironment formed by activated host cells that permitted melanoma growth at the expense of the host organism. Combined experimental and computational approaches clearly highlighted genes and signaling pathways being shared with neurodegenerative diseases. Importantly, the identification of essential molecular networks that operate to promote the brain-adaptive phenotype is of clinical relevance, as they represent leads to urgently needed therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA