Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 257: 114936, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099963

RESUMO

Numerous anthropogenic stressors, such as habitat alteration and nutrient enrichment, affect coastal and marine ecosystems around the globe. An additional threat to these ecosystems is accidental oil pollution. The proactive planning of efficient oil spill response actions requires a firm understanding of the spatiotemporal distribution of ecological coastal values at stake, and how these values can be protected in case of an oil spill. In this paper, literature and expert knowledge regarding the life history attributes of coastal and marine species were used to build a sensitivity index to assess the differences in the potential of species and habitat types to be safeguarded from oil. The developed index prioritizes sensitive species and habitat types based on 1) their conservation value, 2) the oil-induced loss and recovery potential, and 3) the effectiveness of oil retention booms and protection sheets to safeguard these entities. The final sensitivity index compares the predicted difference in the state of populations and habitat types five years after an oil spill with and without protective actions. The higher the difference, the more worthwhile the management actions are. Hence, compared to other oil spill sensitivity and vulnerability indexes presented in the literature, the developed index considers the usefulness of protective measures explicitly. We apply the developed index to a case study area in the Northern Baltic Sea to demonstrate the approach. It is noteworthy that the developed index is applicable to other areas as well, as the approach is based on the biological attributes of species and habitat types instead of individual occurrences.


Assuntos
Poluição por Petróleo , Ecossistema , Acidentes
2.
Environ Sci Technol ; 55(13): 8502-8513, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152746

RESUMO

Mineral deposits containing commercially exploitable metals are of interest for seabed mineral extraction in both the deep sea and shallow sea areas. However, the development of seafloor mining is underpinned by high uncertainties on the implementation of the activities and their consequences for the environment. To avoid unbridled expansion of maritime activities, the environmental risks of new types of activities should be carefully evaluated prior to permitting them, yet observational data on the impacts is mostly missing. Here, we examine the environmental risks of seabed mining using a causal, probabilistic network approach. Drawing on a series of expert interviews, we outline the cause-effect pathways related to seabed mining activities to inform quantitative risk assessments. The approach consists of (1) iterative model building with experts to identify the causal connections between seabed mining activities and the affected ecosystem components and (2) quantitative probabilistic modeling. We demonstrate the approach in the Baltic Sea, where seabed mining been has tested and the ecosystem is well studied. The model is used to provide estimates of mortality of benthic fauna under alternative mining scenarios, offering a quantitative means to highlight the uncertainties around the impacts of mining. We further outline requirements for operationalizing quantitative risk assessments in data-poor cases, highlighting the importance of a predictive approach to risk identification. The model can be used to support permitting processes by providing a more comprehensive description of the potential environmental impacts of seabed resource use, allowing iterative updating of the model as new information becomes available.


Assuntos
Ecossistema , Mineração , Meio Ambiente , Metais , Minerais
3.
Sci Total Environ ; 697: 134026, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31476493

RESUMO

Participatory modelling increases the transparency of environmental planning and management processes and enhances the mutual understanding among different parties. We present a sequential probabilistic approach to involve stakeholders' views in the formal decision support process. A continuous Bayesian Belief Network (BBN) model is used to estimate population parameters for stakeholder groups, based on samples of individual value judgements. The approach allows quantification and visualization of the variability in views among and within stakeholder groups. Discrete BBN is populated with these parameters, to summarize and visualize the information and to link it to a larger decision analytic influence diagram (ID). As part of ID, the resulting discrete BBN element serves as a distribution-form decision criteria in probabilistic evaluation of alternative management strategies, to help find a solution that represents the optimal compromise in the presence of potentially conflicting objectives. We demonstrate our idea using example data from the field of marine spatial planning. However, this approach is applicable to many types of management cases. We suggest that by advancing the mutual understanding and concrete participation this approach can further facilitate the stakeholder involvement also during the various stages of the environmental management process.

4.
Mar Pollut Bull ; 135: 1183-1197, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301017

RESUMO

Mineral extraction from the seabed has experienced a recent surge of interest from both the mining industry and marine scientists. While improved methods of geological investigation have enabled the mapping of new seafloor mineral reserves, the ecological impacts of mining in both the deep sea and the shallow seabed are poorly known. This paper presents a synthesis of the empirical evidence from experimental seabed mining and parallel industries to infer the effects of seabed mineral extraction on marine ecosystems, focusing on polymetallic nodules and ferromanganese concretions. We use a problem-structuring framework to evaluate causal relationships between pressures caused by nodule extraction and the associated changes in marine ecosystems. To ensure that the rationale behind impact assessments is clear, we propose that future impact assessments use pressure-specific expert elicitation. We further discuss integrating ecosystem services in the impact assessments and the implications of current methods for environmental risk assessments.


Assuntos
Ecossistema , Mineração/métodos , Medição de Risco/métodos , Animais , Ecotoxicologia , Meio Ambiente , Minerais , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA