Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 924: 148597, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782220

RESUMO

Purple non-sulfur bacteria (PNSB) are a diverse group of bacteria studied for various possible applications. They are commonly surveyed in bioenergy research as they produce biohydrogen, a candidate for clean alternative energy. This study aimed to assess the biohydrogen production ability and genetically characterize a high biohydrogen-producing PNSB (MAY2) isolated from Los Baños, Laguna, Philippines via whole genome sequencing (WGS). MAY2, when grown in mixed volatile fatty acids, produced biogas with 38% hydrogen. WGS results revealed that the isolate is positively classified under the genus Rhodobacter johrii. Also, 82 genetic hallmarks for biohydrogen production were found in the isolated genome which are involved in the production of key enzymes and proteins relevant to the photofermentative and hydrogen regulation pathways. Its nitrogenase gene cluster is stringently regulated by two genes, nifA and rofN, whose function and expression are easily affected by several environmental factors.


Assuntos
Proteínas de Bactérias , Genoma Bacteriano , Hidrogênio , Rhodobacter , Hidrogênio/metabolismo , Rhodobacter/genética , Rhodobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequenciamento Completo do Genoma/métodos , Família Multigênica , Biocombustíveis , Filogenia , Nitrogenase/genética , Nitrogenase/metabolismo
2.
Data Brief ; 53: 110237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533121

RESUMO

This dataset contains the gene sequences of the small and large sub-unit of the hydrogenase enzyme obtained from the annotated genome of Rhodobacter johrii MAY2. The whole genome sequence of the isolate was performed using SEED genome viewer on the Rapid Annotation using the Subsystem Technology (RAST) platform. Concurrently, guide RNA sequences and primers were meticulously crafted using the CHOPCHOP v.3.0 web tool, specifically designed for the precise editing and amplification of the target genes. The primers were optimized via gradient PCR to determine appropriate amplification conditions. Furthermore, the guide RNA was tested via in-vitro cleavage assay, gauging its efficacy in cleaving the intended target genes. The dataset, including the optimization and the cleavage assay, was deposited in Mendeley Data with DOI no: 10.17632/rcx3mcssnx.2.

3.
J Microbiol Biotechnol ; 26(11): 1951-1964, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27470275

RESUMO

1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. According to qPCR results on the 16S rRNA and soluble di-iron monooxygenase genes, the relative abundances of 1,4-dioxane-degrading bacteria to total bacteria in FS and AS were 29.4% and 57.8%, respectively. For FS, the cell growth yields (Y), maximum specific degradation rate (Vmax), and half-saturation concentration (Km) were 0.58 mg-protein/mg-dioxane, 0.037 mg-dioxane/mg-protein∙h, and 93.9 mg/l, respectively. For AS, Y, Vmax, and Km were 0.34 mg-protein/mg-dioxane, 0.078 mg-dioxane/mg-protein∙h, and 181.3 mg/l, respectively. These kinetics data of FS and AS were similar to previously reported values. Based on bacterial community analysis on 16S rRNA gene sequences of the two enrichment cultures, the FS consortium was identified to contain 38.3% of Mycobacterium and 10.6% of Afipia, similar to previously reported literature. Meanwhile, 49.5% of the AS consortium belonged to the candidate division TM7, which has never been reported to be involved in 1,4-dioxane biodegradation. However, recent studies suggested that TM7 bacteria were associated with degradation of non-biodegradable and hazardous materials. Therefore, our results showed that previously unknown 1,4-dioxane-degrading bacteria might play an important role in enriched AS. Although the metabolic capability and ecophysiological significance of the predominant TM7 bacteria in AS enrichment culture remain unclear, our data reveal hidden characteristics of the TM7 phylum and provide a perspective for studying this previously uncultured phylotype.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Dioxanos/metabolismo , Consórcios Microbianos , Esgotos/microbiologia , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dioxanos/química , Cinética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Microbiologia do Solo
4.
Appl Microbiol Biotechnol ; 100(13): 6055-68, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26971497

RESUMO

A novel perchlorate-reducing bacterium (PCRB), PMJ, was isolated from the mixed liquor suspended solids in the aerobic tank of a wastewater treatment plant. The 16S ribosomal RNA (rRNA), perchlorate reductase, and chlorite dismutase gene sequences revealed that PMJ belonged to the genus Azospira. PMJ was removed high-strength (700 mg/L) perchlorate and also removed low-strength (≤50 mg/L) perchlorate below the detection limit (2 µg/L) when acetate was used as a sole and carbon source. The maximum specific perchlorate utilization rate, q max, was 0.96 mg ClO4 (-)/mg dry cell weight day, and the half-saturation constant, K S , was lower than 0.002 mg ClO4 (-)/L. PMJ also utilized inorganic electron donors [(H2, S(0), and Fe(II)] with perchlorate as an electron acceptor. Perchlorate reduction by PMJ was completely inhibited by oxygen and chlorate but was not inhibited by nitrate. In the presence of similar concentrations (100∼140 mg/L) of nitrate and perchlorate, PMJ simultaneously removed both electron acceptors. Therefore, it was concluded that the strains PMJ might possess separate pathways for perchlorate and nitrate reduction. These results indicated that Azospira sp. PMJ could be efficiently used for treating perchlorate-contaminated groundwater and wastewater because many of these water bodies are known to contain both perchlorate and nitrate. In addition, low K S value and autotrophic perchlorate reduction of PMJ might be useful to design the biological treatment systems.


Assuntos
Nitratos/metabolismo , Percloratos/metabolismo , Rhodocyclaceae/isolamento & purificação , Rhodocyclaceae/metabolismo , Águas Residuárias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio/metabolismo , Rhodocyclaceae/genética
5.
Appl Microbiol Biotechnol ; 97(16): 7505-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23838793

RESUMO

This study elucidated the importance of two critical enzymes in the regulation of butanol production in Clostridium acetobutylicum ATCC 824. Overexpression of both the 6-phosphofructokinase (pfkA) and pyruvate kinase (pykA) genes increased intracellular concentrations of ATP and NADH and also resistance to butanol toxicity. Marked increases of butanol and ethanol production, but not acetone, were also observed in batch fermentation. The butanol and ethanol concentrations were 29.4 and 85.5 % higher, respectively, in the fermentation by double-overexpressed C. acetobutylicum ATCC 824/pfkA+pykA than the wild-type strain. Furthermore, when fed-batch fermentation using glucose was carried out, the butanol and total solvent (acetone, butanol, and ethanol) concentrations reached as high as 19.12 and 28.02 g/L, respectively. The reason for improved butanol formation was attributed to the enhanced NADH and ATP concentrations and increased tolerance to butanol in the double-overexpressed strain.


Assuntos
Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Expressão Gênica , Fosfofrutoquinase-1/biossíntese , Piruvato Quinase/biossíntese , Acetona/metabolismo , Trifosfato de Adenosina/metabolismo , Biotecnologia/métodos , Clostridium acetobutylicum/genética , Etanol/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , NAD/metabolismo , Fosfofrutoquinase-1/genética , Piruvato Quinase/genética
6.
Bioresour Technol ; 137: 302-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23587833

RESUMO

With a target production of 1000 ton of dry algae/yr, lipid content of 30 wt.%, and productivity of 30 g/m(2)-d in a 340-day annual operation, four common scenarios of microalgae bioenergy routes were assessed in terms of cost, energy, and CO2 inputs and outputs. Scenario 1 (biodiesel production), Scenario 2 (Scenario 1 with integrated anaerobic digestion system), Scenario 3 (biogas production), and Scenario 4 (supercritical gasification) were evaluated. Scenario 4 outperformed other scenarios in terms of net energy production (1282.42 kWh/ton algae) and CO2 removal (1.32 ton CO2/ton algae) while Scenario 2 surpassed the other three scenarios in terms of net cost. Scenario 1 produced the lowest energy while Scenario 3 was the most expensive bioenergy system. This study evaluated critical parameters that could direct the proper design of the microalgae bioenergy system with an efficient energy production, CO2 removal, and economic feasibility.


Assuntos
Biocombustíveis , Dióxido de Carbono/metabolismo , Metabolismo Energético , Microalgas/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA