Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(30): 11006-14, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23822850

RESUMO

Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling.

2.
ACS Nano ; 6(6): 5091-101, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22571676

RESUMO

The production of high-performance carbon nanotube (CNT) materials demands understanding of the growth behavior of individual CNTs as well as collective effects among CNTs. We demonstrate the first use of grazing incidence small-angle X-ray scattering to monitor in real time the synthesis of CNT films by chemical vapor deposition. We use a custom-built cold-wall reactor along with a high-speed pixel array detector resulting in a time resolution of 10 msec. Quantitative models applied to time-resolved X-ray scattering patterns reveal that the Fe catalyst film first rapidly dewets into well-defined hemispherical particles during heating in a reducing atmosphere, and then the particles coarsen slowly upon continued annealing. After introduction of the carbon source, the initial CNT diameter distribution closely matches that of the catalyst particles. However, significant changes in CNT diameter can occur quickly during the subsequent CNT self-organization process. Correlation of time-resolved orientation data to X-ray scattering intensity and height kinetics suggests that the rate of self-organization is driven by both the CNT growth rate and density, and vertical CNT growth begins abruptly when CNT alignment reaches a critical threshold. The dynamics of CNT size evolution and self-organization vary according to the catalyst annealing conditions and substrate temperature. Knowledge of these intrinsically rapid processes is vital to improve control of CNT structure and to enable efficient manufacturing of high-density arrays of long, straight CNTs.


Assuntos
Membranas Artificiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Cristalização/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanopartículas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação , Raios X
3.
Nature ; 480(7378): 504-8, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22193105

RESUMO

Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π-π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π-π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33 Å to 3.08 Å. We believe that 3.08 Å is the shortest π-π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π-π distance of 3.04 Å has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8 cm(2) V(-1) s(-1) for unstrained films to a high mobility of 4.6 cm(2) V(-1) s(-1) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.

4.
J Am Chem Soc ; 133(42): 16722-5, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21970371

RESUMO

We demonstrate that poly(3,4-dialkylterthiophenes) (P34ATs) have comparable transistor mobilities (0.17 cm(2) V(-1) s(-1)) and greater environmental stability (less degradation of on/off ratio) than regioregular poly(3-alkylthiophenes) (P3ATs). Unlike poly(3-hexylthiophene) (P3HT), P34ATs do not show a strong and distinct π-π stacking in X-ray diffraction. This suggests that a strong π-π stacking is not always necessary for high charge-carrier mobility and that other potential polymer packing motifs in addition to the edge-on structure (π-π stacking direction parallel to the substrate) can lead to a high carrier mobility. The high charge-carrier mobilities of the hexyl and octyl-substituted P34AT produce power conversion efficiencies of 4.2% in polymer:fullerene bulk heterojunction photovoltaic devices. An enhanced open-circuit voltage (0.716-0.771 eV) in P34AT solar cells relative to P3HT due to increased ionization potentials was observed.

5.
Macromol Rapid Commun ; 32(18): 1454-60, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21739510

RESUMO

Grazing incidence X-ray diffraction (GI-XRD) is used to characterize the crystallographic dynamics of low molecular weight (LMW) and high molecular weight (HMW) poly(3-hexylselenophene) (P3HS) films and blend films of P3HS with [6-6-]-phenyl-C(61) -butyric acid methyl ester (PCBM) as a function of 'step-by-step' thermal annealing, from room temperature to 250 °C. The temperature-dependent GIXRD data show how the melting point of P3HS crystallites is decreased by the presence of PCBM. P3HS crystallite domain sizes dramatically increase upon annealing to the P3HS melting temperature. The formation of well-oriented HMW P3HS crystallites with the (100) plane parallel to the substrate (edge-on orientation), when cooled from melt, are observed. We compare the behaviour of P3HS pure and blend films with that of poly(3-hexyl)thiophene (P3HT) pure and PCBM blended films and suggest that the similar temperature dependent behaviour we observe may be a common to polythiophene and related polymers and their blends.


Assuntos
Fulerenos/química , Compostos Organosselênicos/química , Polímeros/química , Cristalização , Peso Molecular , Polímeros/síntese química , Temperatura , Difração de Raios X
6.
J Appl Phys ; 109(9): 94316-943165, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21709723

RESUMO

Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter >4 µm, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties.

7.
Nano Lett ; 11(3): 1161-5, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21323381

RESUMO

We present a new method to manipulate the channel charge density of field-effect transistors using dipole-generating self-assembled monolayers (SAMs) with different anchor groups. Our approach maintains an ideal interface between the dipole layers and the semiconductor while changing the built-in electric potential by 0.41-0.50 V. This potential difference can be used to change effectively the electrical properties of nanoelectronic devices. We further demonstrate the application of the SAM dipoles to enable air-stable operation of n-channel organic transistors.

8.
Nano Lett ; 10(3): 1000-5, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20146429

RESUMO

The templated self-assembly of block copolymer (BCP) thin films can generate regular arrays of 10-50 nm scale features with good positional and orientational accuracy, but the ordering, registration and pattern transfer of sub-10-nm feature sizes is not well established. Here, we report solvent-annealing and templating methods that enable the formation of highly ordered grating patterns with a line width of 8 nm and period 17 nm from a self-assembled poly(styrene-b-dimethylsiloxane) (PS-PDMS) diblock copolymer. The BCP patterns can be registered hierarchically on a larger-period BCP pattern, which can potentially diversify the available pattern geometries and enables precise pattern registration at small feature sizes. Sub-10-nm-wide tungsten nanowires with excellent order and uniformity were fabricated from the self-assembled patterns using a reactive ion etching process.


Assuntos
Cristalização/métodos , Dimetilpolisiloxanos/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Nylons/química , Poliestirenos/química , Tungstênio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
ACS Nano ; 3(9): 2477-86, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19691287

RESUMO

We study synthesis of vertically aligned carbon nanotube (CNT) "forests" by a decoupled method that facilitates control of the mean diameter and structural quality of the CNTs and enables tuning of the kinetics for efficient growth to forest heights of several millimeters. The growth substrate temperature (T(s)) primarily determines the CNT diameter, whereas independent and rapid thermal treatment (T(p)) of the C(2)H(4)/H(2) reactant mixture significantly changes the growth rate and terminal forest height but does not change the CNT diameter. Synchrotron X-ray scattering is utilized for precise, nondestructive measurement of CNT diameter in large numbers of samples. CNT structural quality monotonically increases with T(s) yet decreases with T(p), and forests grown by this decoupled method have significantly higher quality than those grown using a conventional single-zone tube furnace. Chemical analysis reveals that the thermal treatment generates a broad population of hydrocarbon species, and a nonmonotonic relationship between catalyst lifetime and T(p) suggests that certain carbon species either enhance or inhibit CNT growth. However, the forest height kinetics, as measured in real-time during growth, are self-similar, thereby indicating that a common mechanism of growth termination may be present over a wide range of process conditions.

11.
Langmuir ; 25(10): 5762-6, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19435292

RESUMO

The stratum corneum (SC) is the outermost layer of the epidermis. Stacked intercellular lipid membranes found in the SC play a crucial role in regulating water transport through the skin. Despite the importance of this role of the SC lipid membranes, only a few studies have presented quantitative methods to measure the permeability of water in SC lipid membranes. In this work, we present a new method to determine the water permeability of a model SC lipid membrane using a quartz crystal microbalance (QCM). We investigate a model SC lipid membrane comprising an equimolar mixture of brain ceramide (CER), cholesterol (CHO), and palmitic acid (PA), and use QCM to determine the diffusivity (D), solubility (S,) and permeability (P) of water vapor in the model SC lipid membrane.


Assuntos
Permeabilidade da Membrana Celular , Epiderme , Lipídeos de Membrana/química , Membranas Artificiais , Modelos Biológicos , Água/química , Animais , Transporte Biológico/fisiologia , Humanos , Lipídeos de Membrana/metabolismo , Água/metabolismo
12.
Angew Chem Int Ed Engl ; 48(19): 3494-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350597

RESUMO

Manipulation makes light work: The morphology and rheological properties of a liquid-crystalline system can be dynamically manipulated with UV light by attaching photoresponsive liquid-crystalline moieties to a siloxane-based polymer. Stimulation with UV light induces a conformational change in the molecule, which disrupts the liquid-crystalline mesophase (see picture), and results in a dramatic change in its rheological properties.


Assuntos
Polímeros/química , Polímeros/efeitos da radiação , Siloxanas/química , Siloxanas/efeitos da radiação , Raios Ultravioleta
13.
Rev Sci Instrum ; 80(2): 023903, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19256658

RESUMO

We present the design and verification of a desktop system for the automated production of nanostructured thin films via spin-assisted layer-by-layer (spin-LBL) assembly. The utility of this system is demonstrated by fabricating polyvinyl alcohol/clay nanocomposites. Ellipsometry measurements demonstrate that the automated spin-LBL method creates composites with bilayer thickness and growth rate comparable to traditional dip-LBL; however, the cycle time of the spin-LBL method is an order of magnitude faster. Small angle X-ray scattering analysis shows that the clay platelets in spin-LBL nanocomposites are more highly aligned than in dip-LBL composites. This method can significantly increase the throughput of laboratory-scale LBL discovery and processing, can enable testing of functional properties of LBL nanocomposites over wafer-scale areas, and can be scaled to larger substrates for commercial production.


Assuntos
Centrifugação/instrumentação , Análise de Injeção de Fluxo/instrumentação , Membranas Artificiais , Nanoestruturas/química , Nanotecnologia/instrumentação , Robótica/instrumentação , Adsorção , Centrifugação/métodos , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/métodos , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Reprodutibilidade dos Testes , Robótica/métodos , Sensibilidade e Especificidade , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos
14.
Nano Lett ; 8(10): 3434-40, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18763835

RESUMO

In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

15.
Nano Lett ; 8(6): 1762-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18484777

RESUMO

The fastest growth pattern of layer-by-layer (LBL) assembled films is exponential LBL (e-LBL), which has both fundamental and practical importance. It is associated with "in-and-out" diffusion of flexible polymers and thus was considered to be impossible for films containing clay sheets with strong barrier function, preventing diffusion. Here, we demonstrate that e-LBL for inorganic sheets is possible in a complex tricomponent film of poly(ethyleneimine) (PEI), poly(acrylic acid) (PAA), and Na(+)-montmorillonite (MTM). This system displayed clear e-LBL patterns in terms of both initial accumulation of materials and unusually thick individual bilayers later in the deposition process with film thicknesses reaching 200 microm for films composed of 200 pairs of layers. Successful incorporation of MTM layers was observed by scanning electron microscopy and thermo-gravimetric analysis. Surprisingly, the growth rate was found to be nearly identical in films with and without clay layers, which suggests fast permeation/reptation of polyelectrolytes between the nanosheets during the "in-and-out" diffusion of polymer. In considering these findings, e-LBL growth property is expected for a wide array of available inorganic nanoscale components and have a potential to greatly expand the e-LBL field and LBL field altogether. The large thickness and rapid growth of the films affords fast preparation of nanostructured materials which is essential for multiple practical applications ranging from optical devices to ultrastrong composites.


Assuntos
Cristalização/métodos , Compostos Inorgânicos/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
Soft Matter ; 4(6): 1279-1287, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32907273

RESUMO

A series of well-defined smectic side chain liquid-crystalline (LC) block copolymers with a low glass transition (Tg) siloxane block has been synthesized via anionic polymerization; these systems consist of a glassy polystyrene block and a unique low glass transition temperature LC block based on poly(vinylmethylsiloxane) to which six different LCs have been synthesized and attached. The synthesis techniques used provide systematic control over covalent LC side chain content, allowing for a range of morphologies to be obtained from a single block copolymer backbone during a one-step LC attachment reaction. Variations in the LC structure and content significantly affect the morphology of the LC mesophase, allowing the smectic-to-isotropic transition temperature to be tuned from room temperature up to 150 °C. There are two key driving forces in the self-assembly behavior of these materials that are significantly affected by the LC content. The first is the segmental interaction parameter (χ) between the blocks, which is a function of the amount of LC attached to the siloxane block. The attachment percent of the LCs to the siloxane block determines the packing density, which affects the stability of the LC mesophase and its interactions with the inter-material dividing surface. The self-assembled morphologies are characterized as a function of LC content and the mechanisms for the observed behavior are detailed. Additional insights into the interactions between the LC and block copolymer mesophases are gained by investigating the morphologies in response to mechanical deformation. The elastic modulus of this system can be tailored over several orders of magnitude by controlling the LC content, and the thermo-mechanical behavior is also highly dependent. The ability to precisely control the degree of LC functionalization enables the custom design and tailoring of material properties for specific applications such as electro-mechanical, damping, and mechano-optical devices.

17.
Adv Mater ; 20(14): 2707-14, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25213894

RESUMO

Aligned CNT nanocomposites with variable volume fraction, up to 20%, are demonstrated. Biaxial mechanical densification of aligned CNT forests, followed by capillarity-driven wetting using unmodified aerospace-grade polymers, creates centimeter-scale specimens. Characterizations confirm CNT alignment and dispersion in the thermosets, providing a useful platform for controlled nanoscale interaction and nanocomposite property studies that emphasize anisotropy.

18.
Langmuir ; 23(16): 8515-21, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17602505

RESUMO

Using the layer-by-layer (LbL) assembly technique, we create a polymer-clay structure from a unique combination of LbL materials: poly(ethylene imine), Laponite clay, and poly(ethylene oxide). This trilayer LbL structure is assembled using a combination of hydrogen bonding and electrostatic interactions. The films were characterized using ellipsometry, profilometry, X-ray photon spectroscopy, atomic force microscopy, scanning electron microscopy, wide-angle X-ray diffraction, grazing-incidence small-angle X-ray scattering, and electrochemical impedance spectroscopy (EIS). We observe a layered, anisotropic structure, which resulted in in-plane ion transport 100 times faster than cross-plane at 0% relative humidity. This study represents a first application of EIS in determining anisotropic ion transport in LbL assemblies and its correlation to structural anisotropy.


Assuntos
Silicatos de Alumínio/química , Iminas/química , Nanocompostos/química , Polietilenoglicóis/química , Polietilenos/química , Anisotropia , Argila , Eletroquímica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA