Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vac Sci Technol A ; 36(5): 051507, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30078936

RESUMO

Analysis of the surface of thin Irganox 1010 films before and after sputtering with an argon gas-cluster ion beam was performed with AFM and XPS to determine the effect that Zalar rotation has on the chemistry and morphology of the surface. The analysis is based on the change in roughness of the surface by comparing the same location on the surface before and after sputtering. The ion beam used was an Arn+ of size n = 1000 and energy 4 keV. The XPS analysis agreed with previous results in which the ion beam did not cause measurable accumulation of damaged material. Based on the AFM results, the Irganox 1010 surface became rougher as a result of ion sputtering, and the degree of roughening was quantified, as was the sputter rate. Furthermore, Zalar rotation during ion sputtering did not have a significant effect on surface roughening, surprisingly.

2.
Appl Phys A Mater Sci Process ; 121(3): 1015-1030, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27482144

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using µXANES, SR-µXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA