Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004126

RESUMO

Dairy cattle health traits are paramount from a welfare and economic viewpoint; therefore, modern breeding programs prioritize the genetic improvement of these traits. Estimated breeding values for health traits are published as the probability of animals staying healthy. They are obtained using threshold models, which assume that the observed binary phenotype (i.e., healthy or sick) is dictated by an underlying normally distributed liability exceeding or not a threshold. This methodology requires significant computing time and faces convergence challenges as it implies a nonlinear system of equations. Linear models have more straightforward computations and provide a robust approximation to threshold models; thus, they could be used to overcome the mentioned challenges. However, linear models yield estimated breeding values on the observed scale, requiring an approximation to the liability scale analogous to that from threshold models to later obtain the estimated breeding values on the probability scale. In addition, the robustness of the approximation of linear to threshold models depends on the amount of information and the incidence of the trait, with extreme incidence (i.e., ≤ 5%) deviating from optimal approximation. Our objective was to test a transformation from the observed to the liability and then to the probability scale in the genetic evaluation of health traits with moderate and very low (extreme) incidence. Data comprised displaced abomasum (5.1M), ketosis (3.6M), lameness (5M), and mastitis (6.3M) records from a Holstein population with a pedigree of 6M animals, of which 1.7M were genotyped. Univariate threshold and linear models were performed to predict breeding values. The agreement between estimated breeding values on the probability scale derived from threshold and linear models was assessed using Spearman rank correlations and comparison of estimated breeding values distributions. Correlations were at least 0.95, and estimated breeding value distributions almost entirely overlapped for all the traits but displaced abomasum, the trait with the lowest incidence (2%). Computing time was ∼3x longer for threshold than for linear models. In this Holstein population, the approximation was suboptimal for a trait with extreme incidence (2%). However, when the incidence was ≥6%, the approximation was robust, and its use is recommended along with linear models for analyzing categorical traits in large populations to ease the computational burden.

2.
Animals (Basel) ; 13(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766421

RESUMO

In this study, the authors focused on the evaluation of the genetic parameters of longevity, milk yield traits, and type traits in dairy cattle populations in the Republic of Serbia. The total dataset used consisted of production records and pedigree data for 32,512 Holstein cows that calved from 1981 to 2015. The animal model was applied to determine the variance and covariance components and genetic parameters of the analyzed traits by applying the restricted maximum likelihood (REML) approach and using the programs VCE6 and PEST. The heritability of longevity traits was estimated using the Survival Kit V6.0 software package. Variance and covariance were estimated for five production traits: milk yield (MY), fat yield (FY), protein yield (PY), milk fat content (MC), and protein content (PC), and three longevity traits: length of productive life (LPL), lifetime milk yield (LMY), and the number of lactations achieved (NL) as well as for 18 standard type traits. Heritabilities for the milk, fat, and protein yield traits were 0.20 (MY), 0.15 (FY), and 0.19 (PY), respectively. The estimated coefficients of heritability for the longevity traits were higher when using the Weibull proportional hazards model compared to the traditional linear methods and ranged from 0.08 for NL to 0.10 for LPL. Heritability values for the type traits varied from a low of 0.10 (RLSsv-rear legs set-side view) to medium values of 0.32 (ST-stature). Genetic correlations were found between MY and the following longevity traits: LPL, LMY, and NL with values of -0.18, -0.11, and -0.09, respectively. Genetic correlations were found between MY and a number of linear type traits and varied from 0.02 (between MY and RUH-rear udder height) to 0.28 (between MY and FUA-fore udder attachment). Genetic correlations between the 18 investigated type traits ranged from -0.33 between TL (top line) and RTP (rear teats position) to 0.71 between AN (angularity) and RUH (rear udder height). Genetic correlations between most linear type traits and longevity traits (LPL, LMY, and NL) were generally negative and very low. The highest positive genetic correlation was found between UD and LPL (rxy = 0.38).

3.
Animals (Basel) ; 12(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009669

RESUMO

Abortion in dairy cattle causes great economic losses due to reduced animal health, increase in culling rates, reduction in calf production, and milk yield, among others. Although the etiology of abortions can be of various origins, previous research has shown a genetic component. The objectives of this study were to (1) describe the development of the genomic prediction for cow abortions in lactating Holstein dairy cattle based on producer-recorded data and ssGBLUP methodology and (2) evaluate the efficacy of genomic predictions for cow abortions in commercial herds of US Holstein cows using data from herds that do not contribute phenotypic information to the evaluation. We hypothesized that cows with greater genomic predictions for cow abortions (Z_Abort STA) would have a reduced incidence of abortion. Phenotypic data on abortions, pedigree, and genotypes were collected directly from commercial dairy producers upon obtaining their permission. Abortion was defined as the loss of a confirmed pregnancy after 42 and prior to 260 days of gestation, treated as a binary outcome (0, 1), and analyzed using a threshold model. Data from a different subset of animals were used to test the efficacy of the prediction. The additive genetic variance for the cow abortion trait (Z_Abort) was 0.1235 and heritability was 0.0773. For all animals with genotypes (n = 1,662,251), mean reliability was 42%, and genomic predicted transmitting abilities (gPTAs) ranged from −8.8 to 12.4. Z_Abort had a positive correlation with cow and calf health traits and reproductive traits, and a negative correlation with production traits. Z_Abort effectively identified cows with a greater or lesser risk of abortion (16.6% vs. 11.0% for the worst and best genomics groups, respectively; p < 0.0001). The inclusion of cow abortion genomic predictions in a multi-trait selection index would allow dairy producers and consultants to reduce the incidence of abortion and to select high-producing, healthier, and more profitable cows.

4.
Animals (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809801

RESUMO

Twinning is a multifactorial trait influenced by both genetic and environmental factors that can negatively impact animal welfare and economic sustainability on commercial dairy operations. To date, using genetic selection as a tool for reducing twinning rates on commercial dairies has been proposed, but not yet implemented. In response to this market need, Zoetis (Kalamazoo, MI, USA) has developed a genomic prediction for twin pregnancies, and included it in a comprehensive multitrait selection index. The objectives of this study were to (1) describe a genetic evaluation for twinning in Holstein cattle, (2) demonstrate the efficacy of the predictions, (3) propose strategies to reduce twin pregnancies using this information. Data were retrieved from commercial dairies and provided directly by producers upon obtaining their permission. The twin pregnancies trait (TWIN) was defined as a pregnancy resulting in birth or abortion of twin calves, classified as a binary (0,1) event, and analysed using a threshold animal model. Predictions for a subset of cows were compared to their on-farm twin records. The heritability for twin pregnancies was 0.088, and genomic predicted transmitting abilities ((g)PTAs) ranged from -7.45-20.79. Genetic correlations between TWIN and other traits were low, meaning that improvement for TWIN will not negatively impact improvement for other traits. TWIN was effectively demonstrated to identify cows most and least likely to experience a twin pregnancy in a given lactation, regardless of reproductive protocol used. Effective inclusion of the prediction in a multitrait selection index offers producers a comprehensive tool to inform selection and management decisions. When combined with sound management practices, this presents a compelling opportunity for dairy producers to proactively reduce the incidence of twin pregnancies on commercial dairy operations.

5.
Front Genet ; 5: 56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24715901

RESUMO

Prediction of complex trait phenotypes in the presence of unknown gene action is an ongoing challenge in animals, plants, and humans. Development of flexible predictive models that perform well irrespective of genetic and environmental architectures is desirable. Methods that can address non-additive variation in a non-explicit manner are gaining attention for this purpose and, in particular, semi-parametric kernel-based methods have been applied to diverse datasets, mostly providing encouraging results. On the other hand, the gains obtained from these methods have been smaller when smoothed values such as estimated breeding value (EBV) have been used as response variables. However, less emphasis has been placed on the choice of phenotypes to be used in kernel-based whole-genome prediction. This study aimed to evaluate differences between semi-parametric and parametric approaches using two types of response variables and molecular markers as inputs. Pre-corrected phenotypes (PCP) and EBV obtained for dairy cow health traits were used for this comparison. We observed that non-additive genetic variances were major contributors to total genetic variances in PCP, whereas additivity was the largest contributor to variability of EBV, as expected. Within the kernels evaluated, non-parametric methods yielded slightly better predictive performance across traits relative to their additive counterparts regardless of the type of response variable used. This reinforces the view that non-parametric kernels aiming to capture non-linear relationships between a panel of SNPs and phenotypes are appealing for complex trait prediction. However, like past studies, the gain in predictive correlation was not large for either PCP or EBV. We conclude that capturing non-additive genetic variation, especially epistatic variation, in a cross-validation framework remains a significant challenge even when it is important, as seems to be the case for health traits in dairy cows.

6.
BMC Genet ; 11: 85, 2010 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-20868519

RESUMO

BACKGROUND: A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. RESULTS: The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28% across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. CONCLUSIONS: An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear.


Assuntos
Locos de Características Quantitativas , Animais , Bovinos , Humanos , Modelos Genéticos , Linhagem , Recombinação Genética
7.
Am J Vet Res ; 70(8): 1006-12, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19645582

RESUMO

OBJECTIVE: To evaluate the associations between 14 biological candidate genes and scrotal hernias in pigs. ANIMALS: 1,534 Pietrain-based pigs, including 692 individuals from 298 pig families and 842 male pigs without family information. PROCEDURES: Pigs were classified as affected or unaffected for scrotal hernias. Single nucleotide polymorphisms of candidate genes were analyzed via PCR assays and genotyped. Statistical analyses were performed on the family-trio and the case-control data. RESULTS: 2 genes involved in collagen metabolism (homeobox A10 [HOXA10] and matrix metalloproteinases 2 [MMP2]) and 1 gene encoding zinc finger protein multitype 2 (ZFPM2, important in the development of diaphragmatic hernia) were significantly associated with hernias. Pigs with these genotypes had high odds of developing scrotal hernias in the case and control groups (2 ZFPM2 variants: odds ratio, 4.3 [95% confidence interval, 2.78 to 6.64] and 4.45[95%confidenceinterval,2.88to6.88]). Anothergene, collagentypeII A 1(COL2A1),was potentially involved in hernia development. CONCLUSIONS AND CLINICAL RELEVANCE: HOXA10, ZFPM2, MMP2, and COL2A1 could have important roles in pig hernia development and potentially be useful for marker-assisted selection in the pig industry. IMPACT FOR HUMAN MEDICINE: Pigs are used for the study of many human diseases because of their physiologic similarities. Genes associated with scrotal hernias in this study may be directly used in understanding the molecular mechanisms underlying this defect in humans.


Assuntos
Predisposição Genética para Doença/genética , Hérnia Inguinal/veterinária , Proteínas de Homeodomínio/genética , Metaloproteinase 2 da Matriz/genética , Doenças dos Suínos/genética , Doenças dos Suínos/patologia , Fatores de Transcrição/genética , Animais , Primers do DNA/genética , Feminino , Genótipo , Hérnia Inguinal/genética , Hérnia Inguinal/patologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Suínos
8.
PLoS One ; 4(3): e4837, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19287495

RESUMO

Scrotal hernia in pigs is a complex trait likely affected by genetic and environmental factors. A large-scale association analysis of positional and functional candidate genes was conducted in four previously identified genomic regions linked to hernia susceptibility on Sus scrofa chromosomes 2 and 12, as well as the fifth region around 67 cM on chromosome 2, respectively. In total, 151 out of 416 SNPs discovered were genotyped successfully. Using a family-based analysis we found that four regions surrounding ELF5, KIF18A, COL23A1 on chromosome 2, and NPTX1 on chromosome 12, respectively, may contain the genetic variants important for the development of the scrotal hernia in pigs. These findings were replicated in another case-control dataset. The SNPs around the ELF5 region were in high linkage disequilibrium with each other, and a haplotype containing SNPs from ELF5 and CAT was highly significantly associated with hernia development. Extensive re-sequencing work focused on the KIF18A gene did not detect any further SNPs with extensive association signals. These genes may be involved in the estrogen receptor signaling pathway (KIF18A and NPTX1), the epithelial-mesenchymal transition (ELF5) and the collagen metabolism pathway (COL23A1), which are associated with the important molecular characteristics of hernia pathophysiology. Further investigation on the molecular mechanisms of these genes may provide more molecular clues on hernia development in pigs.


Assuntos
Genômica , Haplótipos , Hérnia Inguinal/veterinária , Suínos/genética , Animais , Mapeamento Cromossômico , Hérnia Inguinal/genética , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA