Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16007, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992147

RESUMO

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Assuntos
Ração Animal , Fezes , Solo , Urina , Animais , Fezes/química , Bovinos , Solo/química , Ovinos , Urina/química , Ração Animal/análise , Nutrientes/análise , Nutrientes/metabolismo , Ruminantes/fisiologia , Nitrogênio/metabolismo , Nitrogênio/urina , Nitrogênio/análise , Fósforo/urina , Fósforo/análise , Fósforo/metabolismo
2.
Plant Soil ; 486(1-2): 639-659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251257

RESUMO

Background and aims: The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods: Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results: The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion: This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-05898-8.

3.
PLoS One ; 16(2): e0246922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577610

RESUMO

Slow-release urea (SRU) is a coated non-protein nitrogen (NPN) source for providing rumen degradable protein in ruminant nutrition. A meta-analysis was conducted to evaluate the effects of replacing vegetable protein sources with SRU (Optigen®, Alltech Inc., USA) on the production performance of dairy cows. Additionally, the impact of SRU supplementation on dairy sustainability was examined by quantifying the carbon footprint (CFP) of feed use for milk production and manure nitrogen (N) excretion of dairy cows. Data on diet composition and performance variables were extracted from 17 experiments with 44 dietary comparisons (control vs. SRU). A linear mixed model and linear regression were applied to statistically analyse the effect of SRU on feed intake and production performance. Feeding SRU decreased (P < 0.05) dry matter intake (DMI, -500 g/d) and N intake (NI, -20 g/d). There was no significant effect (P > 0.05) on milk yield, fat-corrected milk, energy-corrected milk, and milk fat and protein composition. However, SRU supplementation improved (P < 0.05) feed efficiency (+3%) and N use efficiency (NUE, +4%). Regression analyses revealed that increasing SRU inclusion level decreased DMI and NI whereas increasing dietary crude protein (CP) increased both parameters. However, milk yield and feed efficiency increased in response to increasing levels of SRU inclusion and dietary CP. The NUE had a positive relationship with SRU level whereas NUE decreased with increasing dietary CP. The inclusion of SRU in dairy diets reduced the CFP of feed use for milk production (-14.5%; 373.13 vs. 319.15 g CO2 equivalent/kg milk). Moreover, feeding SRU decreased manure N excretion by 2.7% to 3.1% (-12 to -13 g/cow/d) and N excretion intensity by 3.6% to 4.0% (-0.50 to -0.53 g N/kg milk). In conclusion, feeding SRU can contribute to sustainable dairy production through improvement in production efficiency and reduction in environmental impacts.


Assuntos
Ração Animal , Bovinos/fisiologia , Dieta/veterinária , Leite/metabolismo , Ureia/metabolismo , Ração Animal/análise , Criação de Animais Domésticos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Indústria de Laticínios , Proteínas Alimentares/metabolismo , Suplementos Nutricionais/análise , Feminino , Lactação
4.
Animals (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290182

RESUMO

Slow-release urea (SRU) is a coated non-protein nitrogen (NPN) source for ruminant nutrition. This study applied a meta-analytic technique to quantify the effect of a commercial SRU (Optigen®, Alltech Inc., Nicholasville, KY, USA) on the performance of beef cattle. Data were extracted from 17 experiments and analysed using the random-effects model to estimate the effect size of SRU on dry matter intake (DMI), crude protein intake (CPI), live weight gain (LWG) and feed efficiency (FE) of growing and finishing beef cattle. There was no effect of feeding SRU on the overall DMI and CPI of beef cattle. Dietary inclusion of SRU improved the overall LWG (+92 g/d/head) and FE (+12 g LWG/kg DMI/head) of beef cattle. Notably, SRU supplementation in growing cattle exhibited a better improvement on LWG (130 vs. 60 g/d/head) and FE (18 vs. 8 g LWG/kg DMI/head) compared with finishing cattle. Moreover, SRU showed consistent improvements on the LWG and FE of beef cattle under several study factors. Simulation analysis indicated that positive effects of SRU on LWG and FE improved profitability through reduction in feed cost and reduced the emission intensity of beef production. These results indicate that SRU is a sustainable NPN solution in beef cattle production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA