Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Neuroimage ; : 120859, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317274

RESUMO

BACKGROUND: The pathophysiology of protracted symptoms after COVID-19 is unclear. This study aimed to determine if long-COVID is associated with differences in baseline characteristics, markers of white matter diffusivity in the brain, and lower scores on objective cognitive testing. METHODS: Individuals who experienced COVID-19 symptoms for more than 60 days post-infection (long-COVID) (n=56) were compared to individuals who recovered from COVID-19 within 60 days of infection (normal recovery) (n=35). Information regarding physical and mental health, and COVID-19 illness was collected. The National Institute of Health Toolbox Cognition Battery was administered. Participants underwent magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI). Tract-based spatial statistics were used to perform a whole-brain voxel-wise analysis on standard DTI metrics (fractional anisotropy, axial diffusivity, mean diffusivity, radial diffusivity), controlling for age and sex. NIH Toolbox Age-Adjusted Fluid Cognition Scores were used to compare long-COVID and normal recovery groups, covarying for Age-Adjusted Crystallized Cognition Scores and years of education. False discovery rate correction was applied for multiple comparisons. RESULTS: There were no significant differences in age, sex, or history of neurovascular risk factors between the groups. The long-COVID group had significantly (p<0.05) lower mean diffusivity than the normal recovery group across multiple white matter regions, including the internal capsule, anterior and superior corona radiata, corpus callosum, superior fronto-occiptal fasciculus, and posterior thalamic radiation. However, the effect sizes of these differences were small (all ß<|0.3|) and no significant differences were found for the other DTI metrics. Fluid cognition composite scores did not differ significantly between the long-COVID and normal recovery groups (p>0.05). CONCLUSIONS: Differences in diffusivity between long-COVID and normal recovery groups were found on only one DTI metric. This could represent subtle areas of pathology such as gliosis or edema, but the small effect sizes and non-specific nature of the diffusion indices make pathological inference difficult. Although long-COVID patients reported many neuropsychiatric symptoms, significant differences in objective cognitive performance were not found.

2.
JAMA Netw Open ; 7(9): e2431959, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39235809

RESUMO

Importance: Blood-based biomarkers may clarify underlying neuropathology and potentially assist in clinical management of adolescents with sport-related concussion (SRC). Objective: To investigate the association between SRC and plasma biomarkers in adolescents. Design, Setting, and Participants: Prospective cohort study in Canadian sport and clinic settings (Surveillance in High Schools and Community Sport to Reduce Concussions and Their Consequences study; September 2019 to November 2022). Participants were a convenience sample of 849 adolescent (ages 10-18 years) sport participants with blood samples. Data were analyzed from February to September 2023. Exposures: Blood collection and clinical testing preseason (uninjured) and post-SRC follow-ups (ie, ≤72 hours, 1 week, and biweekly until medical clearance to return to play [RTP]). Main Outcomes and Measures: Plasma glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), neurofilament light (NfL), and total tau (t-tau) were assayed. Group-level comparisons of biomarker levels were conducted between uninjured and post-SRC intervals (postinjury day [PID] 0-3, 4-10, 11-28, and >28) considering age and sex as modifiers. Secondary analyses explored associations between biomarker concentrations and clinical outcomes (Sport Concussion Assessment Tool, Fifth Edition [SCAT5] symptom scores and time to RTP). Results: This study included 1023 plasma specimens from 695 uninjured participants (467 male participants [67.2%]; median [IQR] age, 15.90 [15.13-16.84] years) and 154 participants with concussion (78 male participants [51.0%]; median [IQR] age, 16.12 [15.31-17.11] years). Acute (PID 0-3) differences relative to uninjured levels were found for GFAP (female participants: 17.8% increase; ß = 0.164; 95% CI, 0.064 to 0.263; P = .001; male participants: 17.1% increase; ß = 0.157; 95% CI, 0.086 to 0.229; P < .001), UCH-L1 (female participants: 43.4% increase; ß = 0.361; 95% CI, 0.125 to 0.596; P = .003), NfL (male participants: 19.0% increase; ß = 0.174; 95% CI, 0.087 to 0.261; P < .001), and t-tau (female participants: -22.9%; ß = -0.260; 95% CI, -0.391 to -0.130; P < .001; male participants: -18.4%; ß = -0.203; 95% CI, -0.300 to -0.106; P < .001). Differences were observed for all biomarkers at PID 4 to 10, 11 to 28, and greater than 28 compared with uninjured groups. GFAP, NfL, and t-tau were associated with SCAT5 symptom scores across several PID intervals. Higher GFAP after 28 days post-SRC was associated with earlier clearance to RTP (hazard ratio, 4.78; 95% CI, 1.59 to 14.31; P = .01). Male participants exhibited lower GFAP (-9.7%), but higher UCH-L1 (21.3%) compared with female participants. Age was associated with lower GFAP (-5.4% per year) and t-tau (-5.3% per year). Conclusions and Relevance: In this cohort study of 849 adolescents, plasma biomarkers differed between uninjured participants and those with concussions, supporting their continued use to understand concussion neuropathology. Age and sex are critical considerations as these biomarkers progress toward clinical validation.


Assuntos
Traumatismos em Atletas , Biomarcadores , Concussão Encefálica , Proteínas tau , Humanos , Adolescente , Masculino , Feminino , Biomarcadores/sangue , Concussão Encefálica/sangue , Concussão Encefálica/complicações , Estudos Prospectivos , Traumatismos em Atletas/sangue , Traumatismos em Atletas/complicações , Criança , Proteínas tau/sangue , Proteínas de Neurofilamentos/sangue , Ubiquitina Tiolesterase/sangue , Proteína Glial Fibrilar Ácida/sangue , Canadá , Lesões Encefálicas Traumáticas/sangue
3.
Neuroimage ; 298: 120764, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089604

RESUMO

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific symptoms and risk factors. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following TBIs. Repetitive mild TBIs (rmTBI) compound these issues, resulting in cumulative and long-term brain damage in the brain. In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI by employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI). Our hypothesis is that the effects of rmTBI are worsened in aged animals, with this group showing more pronounced alterations in brain connectivity and white matter structure. Utilizing the closed-head impact model of engineered rotational acceleration (CHIMERA) model, we conducted rmTBIs or sham (control) procedures on young (2.5-3-months-old) and aged (22-months-old) male and female mice to model high-risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposhigh-risking effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean diffusivity, radial diffusivity, axial diffusivity, and fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Neuroinflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in injured aged animals compared to sham aged. These findings offer insight into the interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBI.


Assuntos
Concussão Encefálica , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Animais , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Concussão Encefálica/patologia , Camundongos , Masculino , Feminino , Envelhecimento/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Axônios/patologia , Camundongos Endogâmicos C57BL , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Fatores Etários , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Conectoma/métodos
4.
Alzheimers Dement ; 20(6): 4373-4380, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38752508

RESUMO

INTRODUCTION: This study investigates the effect of apolipoprotein E (APOE) genotype on neurology plasma biomarkers in cognitively healthy Super-Seniors. METHODS: Three hundred seventy plasma specimens from Super-Senior participants ≥ 85 years old, who have never been diagnosed with dementia, cancer, diabetes, cardiovascular, or major pulmonary disease, were analyzed on the Quanterix Simoa HD-X analyzer using commercial Neurology 4-plex E and phosphorylated tau (p-tau)181 assays. RESULTS: Eighty (22%) participants were APOE ε4 carriers and 290 (73%) were non-carriers. No significant differences were found between APOE ε4 carriers and non-carriers regarding age, sex, or Mini-Mental State Examination scores. In APOE ε4 carriers, plasma amyloid beta 42/40 was lower and p-tau181 and glial fibrillary acidic protein were higher compared to non-APOE ε4 carriers. After adjusting for demographic variables, p-tau181 was the only biomarker to remain significantly associated with APOE ε4 carrier status. DISCUSSION: APOE ε4 genotype modifies plasma p-tau181 concentration in seniors resilient to age-related clinical disease, suggesting that some Super-Seniors may have Alzheimer's disease pathology without progressing to cognitive decline. HIGHLIGHTS: Healthy seniors enable identification of associations that may be masked by disease. Plasma phosphorylated tau (p-tau)181 concentrations associate with apolipoprotein E (APOE) ε4 carriership in healthy seniors. APOE should be accounted for when interpreting p-tau181, regardless of disease.


Assuntos
Apolipoproteína E4 , Biomarcadores , Proteínas tau , Humanos , Feminino , Masculino , Proteínas tau/sangue , Apolipoproteína E4/genética , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Genótipo , Heterozigoto , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Fosforilação
5.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328104

RESUMO

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI). Utilizing the CHIMERA model, we conducted rmTBIs or sham (control) procedures on young (2.5-3 months old) and aged (22-month-old) male and female mice to model high risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposing effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean, radial, axial diffusivity, fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Inflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in aged animals. These findings provide a comprehensive understanding of the intricate interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBIs.

6.
J Neurotrauma ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323539

RESUMO

Intimate partner violence (IPV) is a significant, global public health concern. Women, individuals with historically underrepresented identities, and disabilities are at high risk for IPV and tend to experience severe injuries. There has been growing concern about the risk of exposure to IPV-related head trauma, resulting in IPV-related brain injury (IPV-BI), and its health consequences. Past work suggests that a significant proportion of women exposed to IPV experience IPV-BI, likely representing a distinct phenotype compared with BI of other etiologies. An IPV-BI often co-occurs with psychological trauma and mental health complaints, leading to unique issues related to identifying, prognosticating, and managing IPV-BI outcomes. The goal of this review is to identify important gaps in research and clinical practice in IPV-BI and suggest potential solutions to address them. We summarize IPV research in five key priority areas: (1) unique considerations for IPV-BI study design; (2) understanding non-fatal strangulation as a form of BI; (3) identifying objective biomarkers of IPV-BI; (4) consideration of the chronicity, cumulative and late effects of IPV-BI; and (5) BI as a risk factor for IPV engagement. Our review concludes with a call to action to help investigators develop ecologically valid research studies addressing the identified clinical-research knowledge gaps and strategies to improve care in individuals exposed to IPV-BI. By reducing the current gaps and answering these calls to action, we will approach IPV-BI in a trauma-informed manner, ultimately improving outcomes and quality of life for those impacted by IPV-BI.

7.
Neurocrit Care ; 41(1): 20-28, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38302643

RESUMO

BACKGROUND: Central nervous system (CNS) injury following initiation of veno-venous extracorporeal membrane oxygenation (VV-ECMO) is common. An acute decrease in partial pressure of arterial carbon dioxide (PaCO2) following VV-ECMO initiation has been suggested as an etiological factor, but the challenges of diagnosing CNS injuries has made discerning a relationship between PaCO2 and CNS injury difficult. METHODS: We conducted a prospective cohort study of adult patients undergoing VV-ECMO for acute respiratory failure. Arterial blood gas measurements were obtained prior to initiation of VV-ECMO, and at every 2-4 h for the first 24 h. Neuroimaging was conducted within the first 7-14 days in patients who were suspected of having neurological injury or unable to be examined because of sedation. We collected blood biospecimens to measure brain biomarkers [neurofilament light (NF-L); glial fibrillary acidic protein (GFAP); and phosphorylated-tau 181] in the first 7 days following initiation of VV-ECMO. We assessed the relationship between both PaCO2 over the first 24 h and brain biomarkers with CNS injury using mixed methods linear regression. Finally, we explored the effects of absolute change of PaCO2 on serum levels of neurological biomarkers by separate mixed methods linear regression for each biomarker using three PaCO2 exposures hypothesized to result in CNS injury. RESULTS: In our cohort, 12 of 59 (20%) patients had overt CNS injury identified on head computed tomography. The PaCO2 decrease with VV-ECMO initiation was steeper in patients who developed a CNS injury (- 0.32%, 95% confidence interval - 0.25 to - 0.39) compared with those without (- 0.18%, 95% confidence interval - 0.14 to - 0.21, P interaction < 0.001). The mean concentration of NF-L increased over time and was higher in those with a CNS injury (464 [739]) compared with those without (127 [257]; P = 0.001). GFAP was higher in those with a CNS injury (4278 [11,653] pg/ml) compared with those without (116 [108] pg/ml; P < 0.001). The mean NF-L, GFAP, and tau over time in patients stratified by the three thresholds of absolute change of PaCO2 showed no differences and had no significant interaction for time. CONCLUSIONS: Although rapid decreases in PaCO2 following initiation of VV-ECMO were slightly greater in patients who had CNS injuries versus those without, data overlap and absence of relationships between PaCO2 and brain biomarkers suggests other pathophysiologic variables are likely at play.


Assuntos
Biomarcadores , Dióxido de Carbono , Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Dióxido de Carbono/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Biomarcadores/sangue , Adulto , Estudos Prospectivos , Proteínas de Neurofilamentos/sangue , Proteína Glial Fibrilar Ácida/sangue , Proteínas tau/sangue , Idoso , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Insuficiência Respiratória/terapia , Insuficiência Respiratória/sangue , Insuficiência Respiratória/etiologia
8.
Clin Chem Lab Med ; 62(4): 698-705, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37882772

RESUMO

OBJECTIVES: Blood biomarkers have the potential to transform diagnosis and prognosis for multiple neurological indications. Establishing normative data is a critical benchmark in the analytical validation process. Normative data are important in children as little is known about how brain development may impact potential biomarkers. The objective of this study is to generate pediatric reference intervals (RIs) for serum neurofilament light (NfL), an axonal marker, and glial fibrillary acidic protein (GFAP), an astrocytic marker. METHODS: Serum from healthy children and adolescents aged 1 to <19 years were obtained from the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) cohort. Serum NfL (n=300) and GFAP (n=316) were quantified using Simoa technology, and discrete RI (2.5th and 97.5th percentiles) and continuous RI (5th and 95th percentiles) were generated. RESULTS: While there was no association with sex, there was a statistically significant (p<0.0001) negative association between age and serum NfL (Rho -0.400) and GFAP (Rho -0.749). Two statistically significant age partitions were generated for NfL: age 1 to <10 years (lower, upper limit; 3.13, 20.6 pg/mL) and 10 to <19 years (1.82, 7.44 pg/mL). For GFAP, three statistically significant age partitions were generated: age 1 to <3.5 years (80.4, 601 pg/mL); 3.5 to <11 years (50.7, 224 pg/mL); and 11 to <19 years (26.2, 119 pg/mL). CONCLUSIONS: Taken together with the literature on adults, NfL and GFAP display U-shaped curves with high levels in infants, decreasing levels during childhood, a plateau during adolescence and early adulthood and increasing levels in seniors. These normative data are expected to inform future pediatric studies on the importance of age on neurological blood biomarkers.


Assuntos
Filamentos Intermediários , Soro , Adulto , Adolescente , Humanos , Criança , Proteína Glial Fibrilar Ácida , Prognóstico , Biomarcadores , Proteínas de Neurofilamentos
9.
Mol Neurodegener ; 18(1): 86, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974180

RESUMO

This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.


Assuntos
Doença de Alzheimer , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Ésteres do Colesterol/metabolismo , LDL-Colesterol , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Triglicerídeos
10.
JAMA Netw Open ; 6(10): e2339733, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870831

RESUMO

Importance: Advancing research on fluid biomarkers associated with sport-related concussion (SRC) highlights the importance of detecting low concentrations using ultrasensitive platforms. However, common statistical practices may overlook replicate errors and specimen exclusion, emphasizing the need to explore robust modeling approaches that consider all available replicate data for comprehensive understanding of sample variation and statistical inferences. Objective: To evaluate the impact of replicate error and different biostatistical modeling approaches on SRC biomarker interpretation. Design, Setting, and Participants: This cross-sectional study within the Surveillance in High Schools to Reduce the Risk of Concussions and Their Consequences study used data from healthy youth athletes (ages 11-18 years) collected from 3 sites across Canada between September 2019 and November 2021. Data were analyzed from November 2022 to February 2023. Exposures: Demographic variables included age, sex, and self-reported history of previous concussion. Main Outcomes and Measures: Outcomes of interest were preinjury plasma glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament-light (NFL), total tau (t-tau) and phosphorylated-tau-181 (p-tau-181) assayed in duplicate. Bland-Altman analysis determined the 95% limits of agreement (LOAs) for each biomarker. The impact of replicate error was explored using 3 biostatistical modeling approaches assessing the associations of age, sex, and previous concussion on biomarker concentrations: multilevel regression using all available replicate data, single-level regression using the means of replicate data, and single-level regression with replicate means, excluding specimens demonstrating more than 20% coefficient variation (CV). Results: The sample included 149 healthy youth athletes (78 [52%] male; mean [SD] age, 15.74 [1.41] years; 51 participants [34%] reporting ≥1 previous concussions). Wide 95% LOAs were observed for GFAP (-17.74 to 18.20 pg/mL), UCH-L1 (-13.80 to 14.77 pg/mL), and t-tau (65.27% to 150.03%). GFAP and UCH-L1 were significantly associated with sex in multilevel regression (GFAP: effect size, 15.65%; ß = -0.17; 95% CI, -0.30 to -0.04]; P = .02; UCH-L1: effect size, 17.24%; ß = -0.19; 95% CI, -0.36 to -0.02]; P = .03) and single-level regression using the means of replicate data (GFAP: effect size, 15.56%; ß = -0.17; 95% CI, -0.30 to -0.03]; P = .02; UCH-L1: effect size, 18.02%; ß = -0.20; 95% CI, -0.37 to -0.03]; P = .02); however, there was no association for UCH-L1 after excluding specimens demonstrating more than 20% CV. Excluding specimens demonstrating more than 20% CV resulted in decreased differences associated with sex in GFAP (effect size, 12.29%; ß = -0.14; 95% CI, -0.273 to -0.004]; P = .04) and increased sex differences in UCH-L1 (effect size, 23.59%; ß = -0.27; 95% CI, -0.55 to 0.01]; P = .06), with the widest 95% CIs (ie, least precision) found in UCH-L1. Conclusions and Relevance: In this cross-sectional study of healthy youth athletes, varying levels of agreement between SRC biomarker technical replicates suggested that means of measurements may not optimize precision for population values. Multilevel regression modeling demonstrated how incorporating all available biomarker data could capture replicate variation, avoiding challenges associated with means and percentage of CV exclusion thresholds to produce more representative estimates of association.


Assuntos
Concussão Encefálica , Esportes , Adolescente , Humanos , Masculino , Feminino , Estudos Transversais , Ubiquitina Tiolesterase , Concussão Encefálica/diagnóstico , Biomarcadores
11.
Clin Biochem ; 121-122: 110680, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884086

RESUMO

INTRODUCTION: In this study, we aimed to create reference intervals (RI) using a large Canadian population-based cohort, for plasma protein biomarkers with potential utility to screen, diagnosis, prognosticate and manage a variety of neurological diseases and disorders. RIs were generated for: the ratio of amyloid beta 42 over 40 (Aß42/40), phosphorylated tau-181 (p-tau-181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). METHODS: 900 plasma specimens from male and female participants aged 3-79 years old were obtained from the Statistics Canada Biobank, which holds specimens from the Canadian Health Measures Survey. Analysis of Aß42/40, p-tau-181, NfL and GFAP was performed on the Quanterix Simoa HD-X analyzer using the Neurology 4-plex E and p-tau-181 assays. Discrete RIs were produced according to Clinical Laboratory Standards Institute guidelines (EP28-A3c). Continuous RIs were created using quantile regression. RESULTS: For discrete RIs, significant age partitions were determined for each biomarker. No significant sex partitions were found. The following ranges and age partitions were determined: Aß42/40: 3-<55y = 0.053-0.098, 55-<80y = 0.040-0.090; p-tau-181: 3-<12y = 1.4-5.6 pg/ml, 12-<60y = 0.8-3.1 pg/ml, 60-<80y = 0.9-4.0 pg/ml; NfL: 3-<40y = 2.6-11.3 pg/ml, 40-<60y = 4.6-17.7 pg/ml, 60-<80y = 8.1-47.1 pg/ml; GFAP; 3-<10y = 47.0-226 pg/ml, 10-<60y = 21.2-91.9 pg/ml, 60-<80y = 40.7-228 pg/ml. Continuous RIs produced smooth centile curves across the age range, from which point estimates for each year of age were calculated. CONCLUSIONS: Discrete and continuous RIs for neurological plasma biomarkers will help refine normative cut-offs across the lifespan and improve the precision of interpretating biomarker levels. Continuous RIs are recommended for use in age groups, such as pediatrics and older adults, that experience rapid concentration changes by age.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Masculino , Criança , Feminino , Idoso , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Canadá , Proteínas tau , Biomarcadores
12.
J Physiol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639379

RESUMO

Hypoxic ischaemic brain injury after resuscitation from cardiac arrest is associated with dismal clinical outcomes. To date, most clinical interventions have been geared towards the restoration of cerebral oxygen delivery after resuscitation; however, outcomes in clinical trials are disappointing. Therefore, alternative disease mechanism(s) are likely to be at play, of which the response of the innate immune system to sterile injured tissue in vivo after reperfusion has garnered significant interest. The innate immune system is composed of three pillars: (i) cytokines and signalling molecules; (ii) leucocyte migration and activation; and (iii) the complement cascade. In animal models of hypoxic ischaemic brain injury, pro-inflammatory cytokines are central to propagation of the response of the innate immune system to cerebral ischaemia-reperfusion. In particular, interleukin-1 beta and downstream signalling can result in direct neural injury that culminates in cell death, termed pyroptosis. Leucocyte chemotaxis and activation are central to the in vivo response to cerebral ischaemia-reperfusion. Both parenchymal microglial activation and possible infiltration of peripherally circulating monocytes might account for exacerbation of an immunopathological response in humans. Finally, activation of the complement cascade intersects with multiple aspects of the innate immune response by facilitating leucocyte activation, further cytokine release and endothelial activation. To date, large studies of immunomodulatory therapies have not been conducted; however, lessons learned from historical studies using therapeutic hypothermia in humans suggest that quelling an immunopathological response might be efficacious. Future work should delineate the precise pathways involved in vivo in humans to target specific signalling molecules.

13.
Crit Care ; 27(1): 295, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481590

RESUMO

BACKGROUND: Prognostication is very important to clinicians and families during the early management of severe traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As has been demonstrated in several diseases, early measurement of serum metabolomic profiles can be used as sensitive and specific biomarkers to predict outcomes. METHODS: We prospectively enrolled 59 adults with sTBI (Glasgow coma scale, GCS ≤ 8) in a multicenter Canadian TBI (CanTBI) study. Serum samples were drawn for metabolomic profiling on the 1st and 4th days following injury. The Glasgow outcome scale extended (GOSE) was collected at 3- and 12-months post-injury. Targeted direct infusion liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS) and untargeted proton nuclear magnetic resonance spectroscopy (1H-NMR) were used to profile serum metabolites. Multivariate analysis was used to determine the association between serum metabolomics and GOSE, dichotomized into favorable (GOSE 5-8) and unfavorable (GOSE 1-4), outcomes. RESULTS: Serum metabolic profiles on days 1 and 4 post-injury were highly predictive (Q2 > 0.4-0.5) and highly accurate (AUC > 0.99) to predict GOSE outcome at 3- and 12-months post-injury and mortality at 3 months. The metabolic profiles on day 4 were more predictive (Q2 > 0.55) than those measured on day 1 post-injury. Unfavorable outcomes were associated with considerable metabolite changes from day 1 to day 4 compared to favorable outcomes. Increased lysophosphatidylcholines, acylcarnitines, energy-related metabolites (glucose, lactate), aromatic amino acids, and glutamate were associated with poor outcomes and mortality. DISCUSSION: Metabolomic profiles were strongly associated with the prognosis of GOSE outcome at 3 and 12 months and mortality following sTBI in adults. The metabolic phenotypes on day 4 post-injury were more predictive and significant for predicting the sTBI outcome compared to the day 1 sample. This may reflect the larger contribution of secondary brain injury (day 4) to sTBI outcome. Patients with unfavorable outcomes demonstrated more metabolite changes from day 1 to day 4 post-injury. These findings highlighted increased concentration of neurobiomarkers such as N-acetylaspartate (NAA) and tyrosine, decreased concentrations of ketone bodies, and decreased urea cycle metabolites on day 4 presenting potential metabolites to predict the outcome. The current findings strongly support the use of serum metabolomics, that are shown to be better than clinical data, in determining prognosis in adults with sTBI in the early days post-injury. Our findings, however, require validation in a larger cohort of adults with sTBI to be used for clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Espectrometria de Massas em Tandem , Humanos , Escala de Resultado de Glasgow , Cromatografia Líquida , Canadá , Lesões Encefálicas Traumáticas/complicações , Metabolômica , Ácido Láctico
14.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298388

RESUMO

Traumatic brain injury (TBI) is an established risk factor for neurodegenerative diseases. In this study, we used the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) to investigate the effects of a single high-energy TBI in rTg4510 mice, a mouse model of tauopathy. Fifteen male rTg4510 mice (4 mo) were impacted at 4.0 J using interfaced CHIMERA and were compared to sham controls. Immediately after injury, the TBI mice showed significant mortality (7/15; 47%) and a prolonged duration of loss of the righting reflex. At 2 mo post-injury, surviving mice displayed significant microgliosis (Iba1) and axonal injury (Neurosilver). Western blotting indicated a reduced p-GSK-3ß (S9):GSK-3ß ratio in TBI mice, suggesting chronic activation of tau kinase. Although longitudinal analysis of plasma total tau suggested that TBI accelerates the appearance of tau in the circulation, there were no significant differences in brain total or p-tau levels, nor did we observe evidence of enhanced neurodegeneration in TBI mice compared to sham mice. In summary, we showed that a single high-energy head impact induces chronic white matter injury and altered GSK-3ß activity without an apparent change in post-injury tauopathy in rTg4510 mice.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Fechados , Tauopatias , Camundongos , Masculino , Animais , Glicogênio Sintase Quinase 3 beta/genética , Lesões Encefálicas Traumáticas/genética , Encéfalo/metabolismo , Tauopatias/genética , Modelos Animais de Doenças , Aceleração , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Stroke ; 54(6): e251-e271, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37009740

RESUMO

BACKGROUND: Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS: Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS: The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS: These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Estados Unidos , Humanos , American Heart Association , Acidente Vascular Cerebral/terapia , Encéfalo , Cognição
16.
J Neurotrauma ; 40(15-16): 1638-1650, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852497

RESUMO

Abstract Developing objective measures to diagnose sport-related concussion (SRC) is a top priority, particularly in the pediatric context, given the vulnerability of the developing brain. While advances in SRC blood biomarkers are being made in adult populations, less data are available for adolescents. Clinical validation of blood biomarkers post-SRC will first require investigation in a healthy uninjured state. Further, rapid pubertal changes during adolescence may implicate possible interactions with circulating sex hormones and the menstrual cycle for females. This cross-sectional study aimed to characterize pre-injury plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light (NF-L), ubiquitin C-terminal hydrolase-L1 (UCH-L1), total tau (T-tau), and phosphorylated tau-181 (P-tau-181), considering previous concussion, age, and sex in healthy adolescent sport participants. Possible associations with menstrual cycle phase and circulating sex hormone levels (i.e., progesterone, estradiol, testosterone) were also explored. Pre-injury blood samples were obtained from 149 healthy adolescents (48% female, ages 11-18) participating in a larger Surveillance in High Schools and Community Sports to Reduce Concussions and their Consequences (SHRed Concussions) multi-site longitudinal cohort study. Main outcomes were natural log (ln) transformed plasma GFAP, NF-L, UCH-L1, T-tau, and P-tau-181 concentrations, quantified on the Quanterix Simoa HD-X platform. Mixed-effects multi-variable linear regression was used to assess associations between biomarkers and self-reported previous concussion (yes/no), age (years), sex (male/female), objectively determined menstrual cycle phase (follicular/luteal), plasma progesterone, estradiol, and testosterone. Males had 19.8% lower UCH-L1 (ß = -0.221, 95% confidence interval [CI; -0.396, -0.046]), 18.9% lower GFAP (ß = -0.210, 95% CI [-0.352, -0.068]), and 21.8% higher P-tau-181 (ß = 0.197, 95% CI [0.048, 0.346]) compared with females, adjusting for age and previous concussion. GFAP decreased 9.5% with each 1-year increase in age, adjusting for previous concussion and sex (ß = -0.100, 95% CI [-0.152, -0.049]). No biomarkers were associated with a history of previous concussion. Exploratory investigations found no associations between biomarkers and menstrual cycle phase. Females displayed an age-adjusted negative association between T-tau and progesterone (ß = -0.010, 95% CI [-0.018, -0.002]), whereas males had a negative age-adjusted association between UCH-L1 and testosterone (ß = -0.020, 95% CI [-0.037, -0.002]). As such, age- and sex-specific reference intervals may be warranted for pediatric athlete populations prior to clinical validation of blood biomarkers for SRC. Additionally, hormonal associations highlight the need to consider puberty and development in adolescent studies. Overall, findings suggest these biomarkers are resilient to a history of previous concussion and menstrual cycle phase, supporting continued investigation in adolescent SRC.


Assuntos
Traumatismos em Atletas , Biomarcadores , Concussão Encefálica , Adolescente , Feminino , Humanos , Masculino , Traumatismos em Atletas/sangue , Biomarcadores/sangue , Concussão Encefálica/sangue , Estudos Transversais , Estradiol/sangue , Proteína Glial Fibrilar Ácida , Estudos Longitudinais , Progesterona/sangue , Testosterona/sangue , Criança , Ciclo Menstrual/sangue , Puberdade
17.
Neurology ; 100(12): e1221-e1233, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36599698

RESUMO

BACKGROUND AND OBJECTIVES: Traumatic spinal cord injury (SCI) is highly heterogeneous, and tools to better delineate pathophysiology and recovery are needed. Our objective was to profile the response of 2 biomarkers, neurofilament light (NF-L) and glial fibrillary acidic protein (GFAP), in the serum and CSF of patients with acute SCI to evaluate their ability to objectively characterize injury severity and predict neurologic recovery. METHODS: Blood and CSF samples were obtained from prospectively enrolled patients with acute SCI through days 1-4 postinjury, and the concentration of NF-L and GFAP was quantified using Simoa technology. Neurologic assessments defined the ASIA Impairment Scale (AIS) grade and motor score (MS) at presentation and 6 months postinjury. RESULTS: One hundred eighteen patients with acute SCI (78 AIS A, 20 AIS B, and 20 AIS C) were enrolled, with 113 (96%) completing 6-month follow-up. NF-L and GFAP levels were strongly associated between paired serum and CSF specimens, were both increased with injury severity, and distinguished among baseline AIS grades. Serum NF-L and GFAP were significantly (p = 0.02 to <0.0001) higher in AIS A patients who did not improve at 6 months, predicting AIS grade conversion with a sensitivity and specificity (95% CI) of 76% (61, 87) and 77% (55, 92) using NF-L and 72% (57, 84) and 77% (55, 92) using GFAP at 72 hours, respectively. Independent of clinical baseline assessment, a serum NF-L threshold of 170 pg/mL at 72 hours predicted those patients who would be classified as motor complete (AIS A/B) compared with motor incomplete (AIS C/D) at 6 months with a sensitivity of 87% (76, 94) and specificity of 84% (69, 94); a serum GFAP threshold of 13,180 pg/mL at 72 hours yielded a sensitivity of 90% (80, 96) and specificity of 84% (69, 94). DISCUSSION: The potential for NF-L and GFAP to classify injury severity and predict outcome after acute SCI will be useful for patient stratification and prognostication in clinical trials and inform communication of prognosis. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that higher serum NF-L and GFAP are associated with worse neurological outcome after acute SCI. TRIAL REGISTRATION INFORMATION: Registered on ClinicalTrials.gov: NCT00135278 (March 2006) and NCT01279811 (January 2012).


Assuntos
Filamentos Intermediários , Traumatismos da Medula Espinal , Humanos , Proteína Glial Fibrilar Ácida , Prognóstico , Biomarcadores
18.
Front Immunol ; 13: 1010216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451808

RESUMO

The COVID-19 pandemic continues to challenge the capacities of hospital ICUs which currently lack the ability to identify prospectively those patients who may require extended management. In this study of 90 ICU COVID-19 patients, we evaluated serum levels of four cytokines (IL-1ß, IL-6, IL-10 and TNFα) as well as standard clinical and laboratory measurements. On 42 of these patients (binned into Initial and Replication Cohorts), we further performed CyTOF-based deep immunophenotyping of peripheral blood mononuclear cells with a panel of 38 antibodies. All measurements and patient samples were taken at time of ICU admission and retrospectively linked to patient clinical outcomes through statistical approaches. These analyses resulted in the definition of a new measure of patient clinical outcome: patients who will recover after short ICU stays (< 6 days) and those who will subsequently die or recover after long ICU stays (≥6 days). Based on these clinical outcome categories, we identified blood prognostic biomarkers that, at time of ICU admission, prospectively distinguish, with 91% sensitivity and 91% specificity (positive likelihood ratio 10.1), patients in the two clinical outcome groups. This is achieved through a tiered evaluation of serum IL-10 and targeted immunophenotyping of monocyte subsets, specifically, CD11clow classical monocytes. Both immune biomarkers were consistently elevated ( ≥15 pg/ml and ≥2.7 x107/L for serum IL-10 and CD11clow classical monocytes, respectively) in those patients who will subsequently die or recover after long ICU stays. This highly sensitive and specific prognostic test could prove useful in guiding clinical resource allocation.


Assuntos
COVID-19 , Humanos , Interleucina-10 , Leucócitos Mononucleares , Pandemias , Prognóstico , Estudos Retrospectivos , Antígeno CD11c , Unidades de Terapia Intensiva
19.
Micromachines (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295926

RESUMO

The PDMS-based microfluidic organ-on-chip platform represents an exciting paradigm that has enjoyed a rapid rise in popularity and adoption. A particularly promising element of this platform is its amenability to rapid manufacturing strategies, which can enable quick adaptations through iterative prototyping. These strategies, however, come with challenges; fluid flow, for example, a core principle of organs-on-chip and the physiology they aim to model, necessitates robust, leak-free channels for potentially long (multi-week) culture durations. In this report, we describe microfluidic chip fabrication methods and strategies that are aimed at overcoming these difficulties; we employ a subset of these strategies to a blood-brain-barrier-on-chip, with others applied to a small-airway-on-chip. Design approaches are detailed with considerations presented for readers. Results pertaining to fabrication parameters we aimed to improve (e.g., the thickness uniformity of molded PDMS), as well as illustrative results pertaining to the establishment of cell cultures using these methods will also be presented.

20.
Mol Neurodegener ; 17(1): 23, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313950

RESUMO

Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Glaucoma/patologia , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neuroproteção , Nervo Óptico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA