Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15758, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977800

RESUMO

The role of SLC3A2, a gene implicated in disulfidptosis, has not been characterized in gliomas. This study aims to clarify the prognostic value of SLC3A2 and its influence on glioma. We evaluated the expression of SLC3A2 and its prognostic importance in gliomas using publicly accessible databases and our clinical glioma samples and with reliance on Meta and Cox regression analysis approaches. Functional enrichment analyses were performed to explore SLC3A2's function. Immune infiltration was evaluated using CIBERSORT, ssGSEA, and single-cell sequencing data. Additionally, Tumor immune dysfunction and exclusion (TIDE) and epithelial-mesenchymal transition scores were determined. CCK8, colony formation, migration, and invasion assays were utilized in vitro, and an orthotopic glioma xenograft model was employed in vivo, to investigate the role of SLC3A2 in gliomas. Bioinformatics analyses indicated high SLC3A2 expression correlates with adverse clinicopathological features and poor patient prognosis. Upregulated SLC3A2 influenced the tumor microenvironment by altering immune cell infiltration, particularly of macrophages, and tumor migration and invasion. SLC3A2 expression positively correlated with immune therapy indicators, including immune checkpoints and TIDE. Elevated SLC3A2 was revealed as an independent risk element for poor glioma prognosis through Cox regression analyses. In vitro experiments showed that reduced SLC3A2 expression decreased cell proliferation, migration, and invasion. In vivo, knockdown of SLC3A2 led to a reduction in tumor volume and prolonged survival in tumor-bearing mice. Therefore, SLC3A2 is a prognostic biomarker and associated with immune infiltration in gliomas.


Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioma , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Prognóstico , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Movimento Celular , Microambiente Tumoral/imunologia , Proliferação de Células , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Feminino , Masculino , Transição Epitelial-Mesenquimal/genética , Camundongos Nus
2.
ACS Appl Mater Interfaces ; 14(27): 31225-31233, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762451

RESUMO

Electronic skins (e-skins) are increasingly investigated and applied in wearable devices, but the robustness and convenient production of traditional e-skins are restricted. In this work, electrospun sandwich-structured elastic films (ESEFs) are developed and utilized as capacitive e-skins. The ESEFs consist of two nanocomposite mats as the electrode layers and a sandwiched thermoplastic polyurethane (TPU) mat as the dielectric layer. The nanocomposite mats are composed of thermoplastic polyurethane (TPU) and AgNW-bridged MXene (AgNW, silver nanowire; MXene, Ti3C2Tx) conductive network. The resulting ESEFs achieve a tensile strength of 14.80 MPa, an elongation at break of 270%, and an outstanding antifatigue property. E-skins of such ESEFs have the ability to respond to both strain and pressure with a high gauge factor (GF) (strain: GF = 1.21; pressure: GF = 0.029 kPa-1), wide response range (strain: 0-150%; pressure: 0-70 kPa), low response time, and outstanding stability (2000 cycles). On the basis of integrated sensing performances, such e-skins are further applied in monitoring various mechanical stimuli in daily life, including bending of a plastic plate, joint bending, and swallowing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA