Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 341(1): 56-62, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23830804

RESUMO

Tumour heterogeneity is a key characteristic of cancer and has significant implications relating to tumour response to chemotherapy as well as patient prognosis and potential relapse. It is being increasingly accepted that tumours are clonal in origin, suggestive of a tumour arising from a deregulated or mutated cell. Cancer stem cells (CSC) possess these capabilities, and with appropriate intracellular triggers and/or signalling from extracellular environments, can purportedly differentiate to initiate tumour formation. Additionally through epithelial mesenchymal plasticity (EMP), where cells gain and maintain characteristics of both epithelial and mesenchymal cell types, epithelial-derived tumour cells have been shown to de-differentiate to acquire cancer stem attributes, which also impart chemotherapy resistance. This new paradigm places EMP centrally in the process of tumour progression and metastasis, as well as modulating drug response to current forms of chemotherapy. Furthermore, EMP and CSCs have been identified in cancers arising from different tissue types making it a possible generic therapeutic target in cancer biology. Using breast cancer (BrCa) as an example, we summarise here the current understanding of CSCs, the role of EMP in cancer biology - especially in CSCs and different molecular subtypes, and the implications this has for current and future cancer treatment strategies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resistência Microbiana a Medicamentos , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/patologia , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos
2.
J Mammary Gland Biol Neoplasia ; 15(2): 235-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20521089

RESUMO

We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44(high)CD24(low). Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.


Assuntos
Neoplasias da Mama/fisiopatologia , Antígeno CD24/metabolismo , Transdiferenciação Celular , Células Epiteliais/fisiologia , Receptores de Hialuronatos/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Neoplásicas/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Desdiferenciação Celular , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA