Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 49, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344457

RESUMO

This study represents an experimental investigation, complemented with a mathematical model, to decipher the effect of gravity on the spreading dynamics of a water droplet. For the theoretical discussion, an overall energy balance approach is adopted to explain the droplet spreading under both microgravity (µg) and terrestrial gravity condition. Besides explaining the mechanism of the droplet spreading under microgravity condition achieved during the parabolic flight, a technique with a detailed experimental set-up has also been developed for the successful deposition of droplet. A rational understanding is formulated through experimental investigation and theoretical analysis, which allows us to distinguish the transient variation of the spreading of a droplet, between microgravity and terrestrial gravity condition. The spreading of the droplet is predicted by the non-linear overall energy balance equation, which accounts for the operating parameters in the form of non-dimensional groups like Reynolds number ([Formula: see text]), Weber number (We) and Bond number (Bo). To distinctly identify the difference in the drop spreading at terrestrial and microgravity conditions, the Bo with transient gravitational field obtained through the on-board accelerometer is considered. The obtained theoretical results are further corroborated by experimental results which are obtained from the parabolic flight.

2.
J Colloid Interface Sci ; 608(Pt 1): 1086-1093, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785456

RESUMO

HYPOTHESIS: The drop deposition technique can impact contact angle measurements. We hypothesized that the drop pinch-off, during the traditionally used pendant drop technique, significantly alters the static contact angle. The capillary waves and dynamic wetting pressure generated during the pendant drop deposition are the source for forced spreading, which can be circumvented by alternative liquid-needle drop deposition techniques. EXPERIMENTS: To compare the role of drop pinch-off and resultant dynamic wetting pressure, we meticulously observed and quantified the entire drop deposition process using high speed imaging until the drop attains the static contact angle in both cases, namely pendant drop and liquid needle deposition technique. Conventionally used standard substrates are compared using both techniques and further compared using literature data. The capillary waves and corresponding drop shape variations are analysed for quantifying the dynamic wetting pressure by measuring drop base diameter, contact angle and centre of mass. FINDINGS: We compared three parameters - drop pinch-off, spreading behaviour and respective static contact angles along with the resultant dynamic wetting pressure for both the techniques, i.e., pendant drop and liquid-needle. For the pendant drop technique we observed a pronounced drop volume dependency of these parameters even though the corresponding Bond numbers are less than unity. In contrast, for the liquid needle there is no such dependency. With a theoretical argument corroborating experimental observations, this work highlights the importance of a well controlled drop deposition, with a minimum wetting pressure, in order to guarantee contact angle data that is independent of drop deposition effects, thereby only reflecting the substrate properties.

3.
Sci Rep ; 5: 17937, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658647

RESUMO

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.

4.
Proc Natl Acad Sci U S A ; 112(8): 2384-8, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675488

RESUMO

The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions of the strongly correlated materials CeRh1-xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA