Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 435(3): 432-4, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9426302

RESUMO

Nitric oxide (NO) has been implicated as a modulator of the vascular effects of angiotensin II (ANG II) in the kidney. We used a NO-sensitive microelectrode to study the effect of ANG II on NO release, and to determine the effect of selective inhibition of the ANG II subtype I receptor (AT1) with losartan (LOS) and candesartan (CAN). NO release from isolated and perfused renal resistance arteries was measured with a porphyrin-electroplated, carbon fiber. The vessels were microdissected from isolated perfused rat kidneys and perfused at constant flow and pressure in vitro. The NO-electrode was placed inside the glass collection cannula to measure vessel effluent NO concentration. ANG II stimulated NO release in a dose-dependent fashion: 0.1 nM, 10 nM and 1000 nM ANG II increased NO-oxidation current by 85+/-18 pA (n = 11), 148+/-22 pA (n = 11), and 193+/-29 pA (n = 11), respectively. These currents correspond to changes in effluent NO concentration of 3.4+/-0.5 nM, 6.1+/-1.1 nM, and 8.2+/-1.3 nM, respectively. Neither LOS (1 muM) nor CAN (1 nM) significantly affected basal NO production, but both AT1-receptor blockers markedly blunted NO release in response to ANG II (10 nM): 77+/-6% inhibition with LOS (n = 8) and 63+/-9% with CAN (n = 8). These results are the first to demonstrate that ANG II stimulates NO release in isolated renal resistance arteries, and that ANG II-induced NO release is blunted by simultaneous AT1-receptor blockade. Our findings suggest that endothelium-dependent modulation of ANG II-induced vasoconstriction in renal resistance arteries is mediated, at least in part, by AT1-receptor-dependent NO release.


Assuntos
Angiotensina II/farmacologia , Óxido Nítrico/metabolismo , Artéria Renal/efeitos dos fármacos , Artéria Renal/metabolismo , Tetrazóis , Antagonistas de Receptores de Angiotensina , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Condutividade Elétrica , Endotélio Vascular/fisiologia , Losartan/farmacologia , Masculino , Microeletrodos , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Receptores de Angiotensina/fisiologia , Resistência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA