Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513640

RESUMO

Exhaustive exercise (EE) induces liver injury and has recently gained much attention. Sulforaphane (SFN) can protect the liver from inflammation and oxidative stress. However, the effects of SFN on EE-induced liver injury and its underlying mechanisms are still unclear. C57BL/6J mice swimming to exhaustion for seven days were used to simulate the liver injury caused by EE. Different doses of SFN (10, 30, 90 mg/kg body weight) were gavage-fed one week before and during the exercise. SFN intervention significantly reduced the EE-induced lactate dehydrogenase (LDH), creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum, as well as attenuating liver tissue morphological abnormality, oxidative stress injury, and inflammation. Liver transcriptomic analysis showed that the differentially expressed genes altered by SFN intervention in the exercise model were mainly enriched in glucose and lipid metabolism pathways. The most altered gene by SFN intervention screened by RNA-seq and validated by qRT-PCR is Ppp1r3g, a gene involved in regulating hepatic glycogenesis, which may play a vital role in the protective effects of SFN in EE-induced liver damage. SFN can protect the liver from EE-induced damage, and glucose and lipid metabolism may be involved in the mechanism of the protective effects.


Assuntos
Exercício Físico , Isotiocianatos , Hepatopatias , Fígado , Sulfóxidos , Fígado/lesões , Sulfóxidos/farmacologia , Isotiocianatos/farmacologia , Estresse Oxidativo , Transcriptoma , Animais , Camundongos , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Lipídeos
2.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986067

RESUMO

Cardiovascular adverse effects caused by high-intensity exercise (HIE) have become a public health problem of widespread concern. The therapeutic effect and metabolic regulation mechanism of myricetin, a phytochemical with potential therapeutic effects, have rarely been studied. In this study, we established mice models of different doses of myricetin intervention with 1 week of HIE after intervention. Cardiac function tests, serology, and pathological examinations were used to evaluate the protective effect of myricetin on the myocardium. The possible therapeutic targets of myricetin were obtained using an integrated analysis of metabolomics and network pharmacology and verified using molecular docking and RT-qPCR experiments. Different concentrations of myricetin improved cardiac function, significantly reduced the levels of myocardial injury markers, alleviated myocardial ultrastructural damage, reduced the area of ischemia/hypoxia, and increased the content of CX43. We obtained the potential targets and regulated metabolic network of myricetin by combined network pharmacology and metabolomics analysis and validated them by molecular docking and RT-qPCR. In conclusion, our findings suggest that myricetin exerts anti-cardiac injury effects of HIE through the downregulation of PTGS2 and MAOB and the upregulation of MAP2K1 and EGFR while regulating the complicated myocardial metabolic network.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Camundongos , Animais , Simulação de Acoplamento Molecular , Coração , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia
3.
Nutrients ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364846

RESUMO

The purpose of this study was to examine whether endogenous GLP-1 (glucagon-like peptide-1) could respond to exercise training in mice, as well as whether dihydromyricetin (DHM) supplementation could enhance GLP-1 levels in response to exercise training. After 2 weeks of exercise intervention, we found that GLP-1 levels were significantly elevated. A reshaped gut microbiota was identified following exercise, as evidenced by the increased abundance of Bifidobacterium, Lactococcus, and Alistipes genus, which are involved in the production of short-chain fatty acids (SCFAs). Antibiotic treatment negated exercise-induced GLP-1 secretion, which could be reversed with gut microbiota transplantation. Additionally, the combined intervention (DHM and exercise) was modeled in mice. Surprisingly, the combined intervention resulted in higher GLP-1 levels than the exercise intervention alone. In exercised mice supplemented with DHM, the gut microbiota composition changed as well, while the amount of SCFAs was unchanged in the stools. Additionally, DHM treatment induced intracellular cAMP in vitro and down-regulated the gene and protein expression of dipeptidyl peptidase-4 (DPP-4) both in vivo and in vitro. Collectively, the auxo-action of exercise on GLP-1 secretion is associated with the gut-microbiota-SCFAs axis. Moreover, our findings suggest that DHM interacts synergistically with exercise to enhance GLP-1 levels by stimulating cAMP and inhibiting DPP-4.


Assuntos
Flavonóis , Peptídeo 1 Semelhante ao Glucagon , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Flavonóis/farmacologia , Ácidos Graxos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA