Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077686

RESUMO

Background: Prognostic risk factors for completely resected stage IA non-small-cell lung cancers (NSCLCs) have advanced minimally over recent decades. Although several biomarkers have been found to be associated with cancer recurrence, their added value to TNM staging and tumor grade are unclear. Methods: Features of preoperative low-dose CT image and histologic findings of hematoxylin- and eosin-stained tissue sections of resected lung tumor specimens were extracted from 182 stage IA NSCLC patients in the National Lung Screening Trial. These features were combined to predict the risk of tumor recurrence or progression through integrated deep learning evaluation (IDLE). Added values of IDLE to TNM staging and tumor grade in progression risk prediction and risk stratification were evaluated. Results: The 5-year AUC of IDLE was 0.817 ± 0.037 as compared to the AUC = 0.561 ± 0.042 and 0.573 ± 0.044 from the TNM stage and tumor grade, respectively. The IDLE score was significantly associated with cancer recurrence (p < 0.0001) even after adjusting for TNM staging and tumor grade. Synergy between chest CT image markers and histological markers was the driving force of the deep learning algorithm to produce a stronger prognostic predictor. Conclusions: Integrating markers from preoperative CT images and pathologist's readings of resected lung specimens through deep learning can improve risk stratification of stage 1A NSCLC patients over TNM staging and tumor grade alone. Our study suggests that combining markers from nonoverlapping platforms can increase the cancer risk prediction accuracy.

2.
Front Immunol ; 12: 710375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707601

RESUMO

The unique environment of the lungs is protected by complex immune interactions. Human lung tissue-resident memory T cells (TRM) have been shown to position at the pathogen entry points and play an essential role in fighting against viral and bacterial pathogens at the frontline through direct mechanisms and also by orchestrating the adaptive immune system through crosstalk. Recent evidence suggests that TRM cells also play a vital part in slowing down carcinogenesis and preventing the spread of solid tumors. Less beneficially, lung TRM cells can promote pathologic inflammation, causing chronic airway inflammatory changes such as asthma and fibrosis. TRM cells from infiltrating recipient T cells may also mediate allograft immunopathology, hence lung damage in patients after lung transplantations. Several therapeutic strategies targeting TRM cells have been developed. This review will summarize recent advances in understanding the establishment and maintenance of TRM cells in the lung, describe their roles in different lung diseases, and discuss how the TRM cells may guide future immunotherapies targeting infectious diseases, cancers and pathologic immune responses.


Assuntos
Pneumopatias/imunologia , Pulmão/imunologia , Células T de Memória/imunologia , Animais , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Terapia Neoadjuvante , Vacinas/imunologia
3.
Front Hum Neurosci ; 15: 711688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335214

RESUMO

Objectives: To investigate changes in functional connectivity between the vermis and cerebral regions in the resting state among subjects with bipolar disorder (BD). Methods: Thirty participants with BD and 28 healthy controls (HC) underwent the resting state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) of the anterior and posterior vermis was examined. For each participant, rsFC maps of the anterior and posterior vermis were computed and compared across the two groups. Results: rsFC between the whole vermis and ventral prefrontal cortex (VPFC) was significantly lower in the BD groups compared to the HC group, and rsFC between the anterior vermis and the middle cingulate cortex was likewise significantly decreased in the BD group. Limitations: 83.3% of the BD participants were taking medication at the time of the study. Our findings may in part be attributed to treatment differences because we did not examine the effects of medication on rsFC. Further, the mixed BD subtypes in our current study may have confounding effects influencing the results. Conclusions: These rsFC differences of vermis-VPFC between groups may contribute to the BD mood regulation.

4.
Radiology ; 286(1): 286-295, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28872442

RESUMO

Purpose To test whether computer-aided diagnosis (CAD) approaches can increase the positive predictive value (PPV) and reduce the false-positive rate in lung cancer screening for small nodules compared with human reading by thoracic radiologists. Materials and Methods A matched case-control sample of low-dose computed tomography (CT) studies in 186 participants with 4-20-mm noncalcified lung nodules who underwent biopsy in the National Lung Screening Trial (NLST) was selected. Variables used for matching were age, sex, smoking status, chronic obstructive pulmonary disease status, body mass index, study year of the positive screening test, and screening results. Studies before lung biopsy were randomly split into a training set (70 cancers plus 70 benign controls) and a validation set (20 cancers plus 26 benign controls). Image features from within and outside dominant nodules were extracted. A CAD algorithm developed from the training set and a random forest classifier were applied to the validation set to predict biopsy outcomes. Receiver operating characteristic analysis was used to compare the prediction accuracy of CAD with the NLST investigator's diagnosis and readings from three experienced and board-certified thoracic radiologists who used contemporary clinical practice guidelines. Results In the validation cohort, the area under the receiver operating characteristic curve for CAD was 0.9154. By default, the sensitivity, specificity, and PPV of the NLST investigators were 1.00, 0.00, and 0.43, respectively. The sensitivity, specificity, PPV, and negative predictive value of CAD and the three radiologists' combined reading were 0.95, 0.88, 0.86, and 0.96 and 0.70, 0.69, 0.64, and 0.75, respectively. Conclusion CAD could increase PPV and reduce the false-positive rate in the early diagnosis of lung cancer. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Detecção Precoce de Câncer/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Algoritmos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA