Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 17(1-2): 277-288, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420144

RESUMO

Clinically used opioids, such as morphine, activate the mu opioid receptor (MOR) encoded by Opioid Receptor Mu 1 (OPRM1) gene. Examination of the opioid receptor genes showed that the human OPRM1 pre-mRNA undergoes extensive alternative splicing events and capable of expressing 21 isoforms. However, characterization of OPRM1 signaling is generalized, and only one isoform (MOR-1) has been extensively studied. Compounding this issue is the increasing significance of intravenous drug abuse in HIV neuropathogenesis. Here, we investigated the molecular impact of morphine and HIV-1 on regulation of OPRM1 pre-mRNA splicing in in vitro and in vivo models. Our results suggested that morphine treatment specifically induces the alternative splicing of MOR-1X isoform among the other isoforms analyzed in neuronal cells. Interestingly, alternative splicing and expression of MOR-1X isoform was also induced in postmortem brain tissues obtained from people with HIV (PWH). Additionally, treatment of control rats with morphine induced alternative splicing of MOR-1X in the brain regions involved in the reward pathways. More interestingly, HIV-1 transgenic (HIV-1Tg) rats, showed an additive induction of MOR-1X isoform with the exposure to morphine. To further assess the possible role of HIV secretory proteins in alternative splicing of OPRM1 gene, we analyzed the impact of HIV-1 Tat, gp120 and Nef proteins on alternative splicing of MOR-1X isoform. While the Tat and gp120 had no visible effects, treatment of neurons with Nef induced MOR-1X alternative splicing that was comparable to treatment with morphine. Altogether, our results suggest that HIV-1 may alter MOR isoform expression with Nef protein by amplifying the rate of MOR-1X alternative splicing induced by morphine.


Assuntos
Infecções por HIV , HIV-1 , Animais , Humanos , Ratos , Morfina/farmacologia , HIV-1/genética , Processamento Alternativo , Precursores de RNA , Isoformas de Proteínas/genética , Receptores Opioides , Infecções por HIV/genética , Receptores Opioides mu/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
2.
J Neuroimmune Pharmacol ; 16(2): 238-250, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33123948

RESUMO

Despite adherence to treatment, individuals living with HIV have an increased risk for developing cognitive impairments, referred to as HIV-associated neurological disorders (HAND). Due to continued growth in the HIV population, particularly amongst the aging cohort, the neurobiological mechanisms of HAND are increasingly relevant. Similar to other viral proteins (e.g. Tat, Gp120, Vpr), the Negative Factor (Nef) is associated with numerous adverse effects in the CNS as well as cognitive impairments. In particular, emerging data indicate the consequences of Nef may be facilitated by the modulation of cellular autophagy as well as its inclusion into extracellular vesicles (EVs). The present review examines evidence for the molecular mechanisms by which Nef might contribute to neuronal dysfunction underlying HAND, with a specific focus on autophagy and EVs. Based on the these data, we propose an integrated model by which Nef may contribute to underlying neuronal dysfunction in HAND and highlight potentially novel therapeutic targets for HAND. Graphical abstract.


Assuntos
Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/virologia , Modelos Neurológicos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Animais , Autofagia/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Humanos , Neurônios/virologia
3.
PLoS One ; 15(11): e0241667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137166

RESUMO

OBJECTIVE: HIV-associated CNS dysfunction is a significant problem among people with HIV (PWH), who now live longer due to viral suppression from combined anti-retroviral therapy (ART). Over the course of infection, HIV generates toxic viral proteins and induces inflammatory cytokines that have toxic effects on neurons in the CNS. Among these viral proteins, HIV Nef has been found in neurons of postmortem brain specimens from PWH. However, the source of Nef and its impact on neuronal cell homeostasis are still elusive. METHODS AND RESULTS: Here, in using a simian immunodeficiency virus (SIV) infected rhesus macaque model of neuroHIV, we find SIV Nef reactivity in the frontal cortex, hippocampus and cerebellum of SIV-infected animals using immunohistochemistry (IHC). Interestingly, SIV-infected macaques treated with ART also showed frequent Nef positive cells in the cerebellum and hippocampus. Using dual quantitative RNAscope and IHC, we observed cells that were positive for Nef, but were not for SIV RNA, suggesting that Nef protein is present in cells that are not actively infected with SIV. Using cell specific markers, we observed Nef protein in microglia/macrophages and astrocytes. Importantly, we also identified a number of NeuN-positive neurons, which are not permissive to SIV infection, but contained Nef protein. Further characterization of Nef-positive neurons showed caspase 3 activation, indicating late stage apoptosis in the CNS neurons. CONCLUSIONS: Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV infected macaques and may contribute to neurological complications seen in PWH.


Assuntos
Cerebelo/metabolismo , Produtos do Gene nef/genética , Hipocampo/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Animais , Cerebelo/virologia , Produtos do Gene nef/metabolismo , Hipocampo/virologia , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo
4.
Brain Sci ; 10(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635207

RESUMO

Several factors can contribute to neuroinflammatory disorders, such as cytokine and chemokines that are produced and released from peripherally derived immune cells or from locally activated cells such as microglia and perivascular macrophages in the brain. The primary function of these cells is to clear inflammation; however, following inflammation, circulating monocytes are recruited to the central nervous system (CNS). Monocyte-derived macrophages in the CNS play pivotal roles in mediating neuroinflammatory responses. Macrophages are heterogeneous both in normal and in pathological conditions due to their plasticity, and they are classified in two main subsets, classically activated (M1) or alternatively activated (M2). There is accumulating evidence suggesting that extracellular vesicles (EVs) released from activated immune cells may play crucial roles in mediating inflammation. However, a possible role of EVs released from immune cells such as M1 and M2 macrophages on neuronal functions in the brain is not known. In order to investigate the molecular and cellular impacts of macrophages and EVs released from macrophage subtypes on neuronal functions, we used a recently established in vitro M1 and M2 macrophage culture model and isolated and characterized EVs from these macrophage subtypes, treated primary neurons with M1 or M2 EVs, and analyzed the extracellular action potentials of neurons with microelectrode array studies (MEA). Our results introduce evidence on the interfering role of inflammatory EVs released from macrophages in interneuronal signal transmission processes, with implications in the pathogenesis of neuroinflammatory diseases induced by a variety of inflammatory insults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA