Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Urol Oncol ; 42(11): 361-369, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39112104

RESUMO

Metastatic urothelial carcinoma (muC) has historically had few effective therapeutic options. Recently, immune checkpoint inhibitors (ICIs), were introduced as therapeutic options for cisplatin-ineligible patients, however, direct head-to-head trials comparing these treatments are lacking. To address this gap, this study employs a Bayesian framework to indirectly compare the performance of ICIs as first-line agents for muC. A systematic review was performed to identify randomized controlled trials evaluating different ICI for mUC. Data was inputted into Review Manager 5.4 for pairwise meta-analysis. Data was then used to build a network in R Studio. These networks were used to model 200,000 Markov Chains via MonteCarlo sampling. The results are expressed as hazard ratios (HR) with 95% credible intervals (CrI). Six studies with 5,449 patients were included, 3,255 received ICI monotherapy or combination. Moreover, a total of 3,006 had PD-L1 positive tumors and 2,362 were PD-L1 negative. Median overall survival (OS) ranged from 12.1 to 31.5 months across the studies, with the combination of enfortumab vedotin and pembrolizumab demonstrating the most substantial reduction in the risk of death (HR 0.47 [95% CrI: 0.38, 0.58]), followed by avelumab monotherapy (HR 0.69 [95% CrI: 0.56, 0.86]). The limitations of this network meta-analysis include variability in study follow-up duration, lack of standardized methods for assessing PD-L1 positivity, and potential bias introduced by control arms with poorer survival outcomes across included trials. The enfortumab vedotin/pembrolizumab combination significantly improved survival and response rates. Avelumab showed notable single-agent activity. These findings provide a valuable framework to guide clinical decision-making and highlight priority areas for future research, including biomarker refinement and novel combination strategies to enhance antitumor immunity in this challenging malignancy.


Assuntos
Teorema de Bayes , Carcinoma de Células de Transição , Inibidores de Checkpoint Imunológico , Metanálise em Rede , Humanos , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/secundário , Inibidores de Checkpoint Imunológico/uso terapêutico , Metástase Neoplásica , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia
2.
Pharmacol Ther ; 140(3): 223-38, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23859952

RESUMO

In the United States, prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the second leading cause of cancer-related death for men. The prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR), a hormone activated transcription factor. The primary treatment for metastatic PCa is androgen deprivation therapy (ADT). For the most part, tumors respond to ADT, but most become resistant to therapy within two years. There is persuasive evidence that castration resistant (also termed castration recurrent) PCa (CRPC) remains AR dependent. Recent studies have shown that there are numerous factors that contribute to AR reactivation despite castrate serum levels of androgens. These include changes in AR expression and structure through gene amplification, mutation, and alternative splicing. Changes in steroid metabolism, cell signaling, and coregulator proteins are also important contributors to AR reactivation in CRPC. Most AR targeted therapies have been directed at the hormone binding domain. The finding that constitutively active AR splice variants that lack the hormone binding domain are frequently expressed in CRPC highlights the need to develop therapies that target other portions of AR. In this review, the role of AR in normal prostate, in PCa, and particularly the mechanisms for its reactivation subsequent to ADT are summarized. In addition, recent clinical trials and novel approaches to target AR are discussed.


Assuntos
Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/genética , Animais , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA