Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13458, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862568

RESUMO

Late Holocene relative sea-level (RSL) data are important to understand the drivers of RSL change, but there is a lack of precise RSL records from the Sunda Shelf. Here, we produced a Late Holocene RSL reconstruction from coral microatolls in Singapore, demonstrating for the first time the utility of Diploastrea heliopora microatolls as sea-level indicators. We produced 12 sea-level index points and three marine limiting data with a precision of < ± 0.2 m (2σ) and < ± 26 years uncertainties (95% highest density region). The data show a RSL fall of 0.31 ± 0.18 m between 2.8 and 0.6 thousand years before present (kyr BP), at rates between - 0.1 ± 0.3 and - 0.2 ± 0.7 mm/year. Surface profiles of the fossil coral microatolls suggest fluctuations in the rate of RSL fall: (1) stable between 2.8 and 2.5 kyr BP; (2) rising at ~ 1.8 kyr BP; and (3) stable from 0.8 to 0.6 kyr BP. The microatoll record shows general agreement with published, high-quality RSL data within the Sunda Shelf. Comparison to a suite of glacial isostatic adjustment (GIA) models indicate preference for lower viscosities in the mantle. However, more high quality and precise Late Holocene RSL data are needed to further evaluate the drivers of RSL change in the region and better constrain GIA model parameters.

2.
Ecol Evol ; 14(5): e11385, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742187

RESUMO

Despite seawalls becoming ubiquitous coastal features, and having some physical similarities to natural rocky shores, it remains unclear how these urban habitats influence predator-prey interactions. Predators can affect intertidal mobile prey densities through two pathways: (1) successful predation directly influences prey mortality rates, and (2) direct and indirect effects of predation can scare and induce motile prey to seek safer areas. In this study, we investigated whether intertidal predators affect the density of the marine gastropod, Nerita undata, at four seawall sites in Singapore. Using a tethering method that we developed, we monitored the mortality and other evidence of predation (shell state) of tethered N. undata. Field experiments revealed high (22.5%-82.5%) predation potential of N. undata across the four sites, with significantly higher predation risk at lower shore heights and for snails with mixed shell coloration. Observations and analysis of the shell state after 3 days showed that predation on seawalls was primarily by crushing predators such as fish. Other predators of N. undata include predatory snails, with various feeding methods that left behind different predator signatures. Our results add substantially to the limited knowledge on predator-prey interactions on seawalls, particularly for Nerita undata, and suggest that seawall systems are more dynamic than previously thought. This further highlights the role of these artificial structures as important habitats and feeding grounds in urban coastal ecosystems.

3.
Angew Chem Int Ed Engl ; 63(8): e202315611, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38084884

RESUMO

Membrane-based gas separations are crucial for an energy-efficient future. However, it is difficult to develop membrane materials that are high-performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd-catalyzed C-O coupling reactions. The scaffold of these microporous polymers consists of rigid three-dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution-processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2 /CH4 and (H2 S+CO2 )/CH4 selectivity in mixture tests as predicted by the dual-mode sorption model. The structural tunability, stability, and ease-of-processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.

4.
Inorg Chem ; 59(13): 9350-9355, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32573215

RESUMO

Metal-organic frameworks (MOFs) are typically synthesized via solvothermal reactions, whose reaction kinetics might be a bottleneck in the scaled-up manufacturing of these materials. Herein, we show that asymmetric cationic site occupancy within a mixed-metal citrate-based MOF-KM3(C6H4O7)(C6H5O7)·xH2O (M = Co, Zn), also known as UTSA-16-can be exploited for improved formation kinetics. Using this strategy, mixed-metal UTSA-16 can be crystallized under significantly milder conditions relative to the parent Co-based one, paving the way for the mass production of this promising material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA