Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 59(9): N27-36, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24732073

RESUMO

A promising, new, in vivo prostate dosimetry system has been developed for clinical radiation therapy. This work outlines the preliminary end-to-end testing of the accuracy and precision of the new OARtrac scintillation dosimetry system. We tested 94 calibrated plastic scintillation detector (PSD) probes before their final integration into endorectal balloon assemblies. These probes had been calibrated at The University of Texas MD Anderson Cancer Center Dosimetry Laboratory. We used a complete clinical OARtrac system including the PSD probes, charge coupled device camera monitoring system, and the manufacturer's integrated software package. The PSD probes were irradiated at 6 MV in a Solid Water® phantom. Irradiations were performed with a 6 MV linear accelerator using anterior-posterior/posterior-anterior matched fields to a maximum dose of 200 cGy in a 100 cm source-axis distance geometry. As a whole, the OARtrac system has good accuracy with a mean error of 0.01% and an error spread of ±5.4% at the 95% confidence interval. These results reflect the PSD probes' accuracy before their final insertion into endorectal balloons. Future work will test the dosimetric effects of mounting the PSD probes within the endorectal balloon assemblies.


Assuntos
Plásticos , Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Contagem de Cintilação/instrumentação , Humanos , Masculino , Imagens de Fantasmas
2.
Opt Express ; 20(19): 21196-213, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037244

RESUMO

Beam combining of phase-modulated kilowatt fiber amplifiers has generated considerable interest recently. We describe in the time domain how stimulated Brillouin scattering (SBS) is generated in an optical fiber under phase-modulated laser conditions, and we analyze different phase modulation techniques. The temporal and spatial evolutions of the acoustic phonon, laser, and Stokes fields are determined by solving the coupled three-wave interaction system. Numerical accuracy is verified through agreement with the analytical solution for the un-modulated case and through the standard photon conservation relation for counter-propagating optical fields. As a test for a modulated laser, a sinusoidal phase modulation is examined for a broad range of modulation amplitudes and frequencies. We show that, at high modulation frequencies, our simulations agree with the analytical results obtained from decomposing the optical power into its frequency components. At low modulation frequencies, there is a significant departure due to the appreciable cross talk among the laser and Stokes sidebands. We also examine SBS suppression for a white noise source and show significant departures for short fibers from analytically derived formulas. Finally, SBS suppression through the application of pseudo-random bit sequence modulation is examined for various patterns. It is shown that for a fiber length of 9 m the patterns at or near n=7 provide the best mitigation of SBS with suppression factors approaching 17 dB at a modulation frequency of 5 GHz.

3.
Opt Lett ; 36(5): 618-20, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368926

RESUMO

We present high power results of a Yb-doped fiber amplifier seeded with a combination of broad and single-frequency laser signals. This two-tone concept was used in conjunction with externally applied or intrinsically formed thermal gradients to demonstrate combined stimulated Brillouin scattering suppression in a copumped monolithic, polarization-maintaining (PM) fiber. Depending on the input parameters and the thermal gradient, the output power of the single-frequency signal ranged from 80 to 203 W with slope efficiencies from 70% to 80%. The 203 W amplifier was pump limited and is, to the best of our knowledge, the highest reported in the literature for monolithic, PM single-frequency fiber amplifiers.

4.
Opt Express ; 18(25): 26214-28, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164971

RESUMO

We analyze the scalability of amplifying the output from a single-frequency diode laser operating at 1178 nm through the utilization of a core pumped Raman fiber amplifier. A detailed model that accounts for stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in relation to the fiber mode field diameter, length, seed power, and available pump power in both co-pumped and counter-pumped configurations is developed. The backward travelling Stokes light is initiated from both spontaneous Brillouin and spontaneous Raman processes. It is found that when fiber length is optimized, the amplifier output scales linearly with available pump power. Although higher amplifier efficiency is obtained with higher seed power, the output power diminishes. In order to mitigate the SBS process for further power scaling, we employ and optimize a multi-step temperature distribution. Finally, we consider the feasibility of generating the D(2a) and D(2b) lines in a sodium guide star beacon from a single Raman amplifier by examining four-wave mixing (FWM).


Assuntos
Amplificadores Eletrônicos , Tecnologia de Fibra Óptica/instrumentação , Lasers , Análise Espectral Raman/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos
5.
Opt Lett ; 35(18): 3114-6, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20847796

RESUMO

We demonstrate stimulated Brillouin scattering (SBS) suppression in a Yb-doped fiber amplifier by seeding with a combination of broad- and single-frequency laser beams that are separated sufficiently to suppress four-wave mixing and to allow for efficient laser gain competition between the two signals. In the experiment, a monolithic fiber configuration was used. With appropriate selection of seed power ratio, we were able to generate single-frequency 1064 nm light with a slope efficiency of 78% while simultaneously suppressing the backscattered Stokes light. We discuss scalability to high power wherein a large thermal gradient can be induced at the output end of the fiber via quantum defect heating, leading to an SBS suppression factor comparable to counterpumping.

6.
Opt Express ; 17(26): 24317-33, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20052142

RESUMO

We report on a polarization-maintaining narrow-linewidth high power ytterbium-doped photonic crystal fiber amplifier with an output as high as 260 W and a slope efficiency of approximately 74%. Measurements of the beam quality yielded M2 values in the range of 1.2-1.3. The linewidth was determined at two different powers using an optical heterodyne detection technique and yielded values that were less than 10 KHz. Our maximum output power was pump limited and measurements of the reflected light indicated that we operated below the stimulated Brillouin scattering (SBS) threshold. Using a pump-probe technique, we estimated the Brillouin gain bandwidth to be approximately 68 MHz. In addition, the Brillouin gain spectrum revealed secondary peaks lying at the high-frequency side. In order to study the power limitations of our amplifier, we developed a detailed model that included a distributed noise source for the SBS process and a temperature gradient obtained via quantum defect heating. Our simulations indicated that for this particular fiber amplifier configuration an output power approaching 1 KW can be achieved. We also found that for forced air cooling the SBS threshold saturates regardless of the operating temperature of the polymer coating. Finally, we show that relatively small enhancement is obtained if a continuous transverse acoustic velocity gradient was implemented in conjunction with the thermal gradient. The latter conclusions drawn from our simulations also hold true for conventional fibers.


Assuntos
Amplificadores Eletrônicos , Tecnologia de Fibra Óptica/instrumentação , Lasers , Desenho Assistido por Computador , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
7.
Opt Express ; 16(18): 14233-47, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18773034

RESUMO

A technique that employs two seed signals for the purpose of mitigating stimulated Brillouin scattering (SBS) effects in narrow-linewidth Yb-doped fiber amplifiers is investigated theoretically by constructing a self-consistent model that incorporates the laser gain, SBS, and four-wave mixing (FWM). The model reduces to solving a two-point boundary problem consisting of an 8x8 system of coupled nonlinear differential equations. Optimal operating conditions are determined by examining the interplay between the wavelength separation and power ratio of the two seeds. Two variants of this 'two-tone' amplification are considered. In one case the wavelength separation is precisely twice the Brillouin shift, while the other case considers a greater wavelength separation. For the former case, a two-fold increase in total output power over a broad range of seed power ratios centered about a ratio of approximately 2 is obtained, but with fairly large FWM. For the latter case, this model predicts an approximately 100% increase in output power (at SBS threshold with no signs of FWM) for a 'two-tone' amplifier with seed signals at 1064nm and 1068nm, compared to a conventional fiber amplifier with a single 1068nm seed. More significantly for this case, it is found that at a wavelength separation greater than 10nm, it is possible to appreciably enhance the power output of one of the laser frequencies.


Assuntos
Amplificadores Eletrônicos , Desenho Assistido por Computador , Lasers de Estado Sólido , Refratometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA