Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522107

RESUMO

Silicon carbide (SiC) is a wide-band gap semiconductor that exceeds other semiconducting materials (except diamond) in electrical, mechanical, chemical, and radiation stability. In this paper, we report a novel approach to fabrication of SiC nano films on a Si substrate, which is based on the endotaxial growth of a SiC crystalline phase in a graphite-like carbon (GLC) matrix. GLC films were formed by carbonization of rigid rod polyimide (PI) Langmuir-Blodgett (LB) films on a Si substrate at 1000 °C in vacuum. After rapid thermal annealing of GLC films at 1100 °C and 1200 °C, new types of heterostructures SiC(10 nm)/GLC(20 nm)/Si(111) and SiC(20 nm)/GLC(15 nm)/SiC(10 nm)/Si(111) were obtained. The SiC top layer was formed due to the Si-containing gas phase present above the surface of GLC film. An advantage of the proposed method of endotaxy is that the SiC crystalline phase is formed within the volume of the GLC film of a thickness predetermined by using PI LB films with different numbers of monolayers for carbonization. This approach allows growing SiC layers close to the 2D state, which is promising for optoelectronics, photovoltaics, spintronics.

2.
Materials (Basel) ; 16(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512303

RESUMO

In this work, we study the effects of treating nanostructured SnO2-SiO2 films derived by a sol-gel method with nitrogen and oxygen plasma. The structural and chemical properties of the films are closely investigated. To quantify surface site activity in the films following treatment, we employed a photocatalytic UV degradation test with brilliant green. Using X-ray photoelectron spectroscopy, it was found that treatment with oxygen plasma led to a high deviation in the stoichiometry of the SnO2 surface and even the appearance of a tin monoxide phase. These samples also exhibited a maximum photocatalytic activity. In contrast, treatment with nitrogen plasma did not lead to any noticeable changes in the material. However, increasing the power of the plasma source from 250 W to 500 W led to the appearance of an SnO fraction on the surface and a reduction in the photocatalytic activity. In general, all the types of plasma treatment tested led to amorphization in the SnO2-SiO2 samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA