Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Small ; : e2406849, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324303

RESUMO

The newly emerged Mn-based selenides as cathodes for aqueous Zn-ion batteries (ZIBs) have drawn researchers' interest because of their lower electronegativity and better electronic conductivity compared with the corresponding Mn-based oxides. Nevertheless, the energy storage mechanism of Mn-based selenides still needs to be further clarified. Herein, the MnSe/Se and MnSe polyhedral microspheres are reported as cathodes for ZIBs, and the MnSe cathode achieves significantly enhanced specific capacity, rate performance, and cycling stability. In-depth kinetic analysis confirms that the MnSe cathode presents better kinetic behavior and density functional theory (DFT) calculations verify the fast diffusion kinetics of the MnSe cathode. More importantly, systematic ex situ characterizations reveal that the microstructured MnSe can exist stably during the charge-discharge process and store energy with H+/Zn2+ co-insertion mechanism, which is greatly different from the phase transformation of the nanostructured α-MnSe reported in the literature. Additionally, it is verified that the different types of separators exhibit remarkably different zinc storage performance of the MnSe cathode. This study not only offers a good guidance for developing high-performance ZIBs Mn-based cathode materials and explores the effect of separators on the zinc storage performance, but also provides new insights into the energy storage mechanism of the MnSe cathode.

3.
Ecotoxicol Environ Saf ; 285: 117058, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299208

RESUMO

In recent years, the environmental impact of microplastics (MPs) and antibiotics (ATs) as pollutants cannot be ignored. In order to evaluate the carrier effect of MPs in the aqueous environment, three MPs, polyamide (PA), polyethylene (PE) and polyethylene terephthalate (PET), were selected in this study, and their structures were analyzed by means of characterization. A preliminary description of their interactions with sulfamonomethoxine was carried out by adsorption kinetics and isotherm fitting. The dominance of non-bonding capacity (van der Waals and electrostatic interaction forces) in the adsorption process was demonstrated using molecular dynamics (MD) simulations and density functional theory (DFT), with the interaction strengths ranked as PA > PE > PET, respectively. PA is less adsorbent stable at the molecular level but exhibits the largest adsorption capacity influenced by the characterized structure and multiple interaction forces. PET possesses a stronger stability and is not easily replaced by other substances. This will help to further understand the complex effect mechanism between MPs and organic pollutants, and provide an important reference for the prevention and control of environmental pollution.

4.
Adv Mater ; 36(30): e2401667, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843541

RESUMO

The efficacy of adoptive T cell therapy (ACT) for the treatment of solid tumors remains challenging. In addition to the poor infiltration of effector T (Teff) cells limited by the physical barrier surrounding the solid tumor, another major obstacle is the extensive infiltration of regulatory T (Treg) cells, a major immunosuppressive immune cell subset, in the tumor microenvironment. Here, this work develops a grooved microneedle patch for augmenting ACT, aiming to simultaneously overcome physical and immunosuppressive barriers. The microneedles are engineered through an ice-templated method to generate the grooved structure for sufficient T-cell loading. In addition, with the surface modification of chemokine CCL22, the MNs could not only directly deliver tumor-specific T cells into solid tumors through physical penetration, but also specifically divert Treg cells from the tumor microenvironment to the surface of the microneedles via a cytokine concentration gradient, leading to an increase in the ratio of Teff cells/Treg cells in a mouse melanoma model. Consequently, this local delivery strategy of both T cell receptor T cells and chimeric antigen receptor T cells via the CCL22-modified grooved microneedles as a local niche could significantly enhance the antitumor efficacy and reduce the on-target off-tumor toxicity of ACT.


Assuntos
Imunoterapia Adotiva , Agulhas , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Imunoterapia Adotiva/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Quimiocina CCL22/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia
5.
Opt Express ; 32(7): 12081-12091, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571041

RESUMO

The traditional analysis method for super multi-view 3D display based on geometric optics, which approximates the lenticular lenses as a series of pinhole structures, ignored the chromatic aberration. In this paper, the optimization method based on diffraction theory is proposed for super multi-view 3D display, where the wavefronts are evaluated accurately by the forward propagation method, and the chromatic aberration of the synthetic viewpoint image is reduced dramatically by the backward reconstruction optimization method (BROM). The optical experiment is performed to verify the feasibility of the method, which is consistent with numerical simulation results. It is proved that the proposed method simulates the physical propagation process of super multi-view 3D display and improves the reconstructed image quality. In the future, it can be used to achieve the super multi-view 3D light field technology with low crosstalk.

6.
Nat Mater ; 23(6): 844-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38448658

RESUMO

Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.


Assuntos
Liofilização , Linfonodos , Mesotelina , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfonodos/imunologia , Linfócitos T/imunologia , Linfócitos T/citologia , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia
7.
Nat Commun ; 15(1): 2098, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459034

RESUMO

Yutu-2 rover conducted an exciting expedition on the 41st lunar day to investigate a fin-shaped rock at Longji site (45.44°S, 177.56°E) by extending its locomotion margin on perilous peaks. The varied locomotion encountered, especially multi-form wheel slippage, during the journey to the target rock, established unique conditions for a fin-grained lunar regolith analysis regarding bearing, shear and lateral properties based on terramechanics. Here, we show a tri-aspect characterization of lunar regolith and infer the rock's origin using a digital twin. We estimate internal friction angle within 21.5°-42.0° and associated cohesion of 520-3154 Pa in the Chang'E-4 operational site. These findings suggest shear characteristics similar to Apollo 12 mission samples but notably higher cohesion compared to regolith investigated on most nearside lunar missions. We estimate external friction angle in lateral properties to be within 8.3°-16.5°, which fills the gaps of the lateral property estimation of the lunar farside regolith and serves as a foundational parameter for subsequent engineering verifications. Our in-situ spectral investigations of the target rock unveil its composition of iron/magnesium-rich low-calcium pyroxene, linking it to the Zhinyu crater (45.34°S, 176.15°E) ejecta. Our results indicate that the combination of in-situ measurements with robotics technology in planetary exploration reveal the possibility of additional source regions contributing to the local materials at the Chang'E-4 site, implying a more complicated geological history in the vicinity.

8.
Sci Adv ; 10(13): eadk8264, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552011

RESUMO

Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Técnicas de Transferência de Genes , Mutações Sintéticas Letais , Células Endoteliais , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Edição de Genes , Pulmão
9.
Small ; 20(15): e2306237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009589

RESUMO

Manganese-based materials are regarded as the most prospective cathode materials because of their high natural abundance, low toxicity, and high specific capacity. Nevertheless, the low conductivity, poor cycling performance, and controversial energy storage mechanisms hinder their practical application. Here, the MnS0.5Se0.5 microspheres are synthesized by a two-step hydrothermal approach and employed as cathode materials for aqueous zinc-ion batteries (AZIBs) for the first time. Interestingly, in-depth ex situ tests and electrochemical kinetic analyses reveal that MnS0.5Se0.5 is first irreversibly converted into low-crystallinity ZnMnO3 and MnOx by in situ electrooxidation (MnS0.5Se0.5-EOP) during the first charging process, and then a reversible co-insertion/extraction of H+/Zn2+ occurs in the as-obtained MnS0.5Se0.5-EOP electrode during the subsequent discharging and charging processes. Benefiting from the increased surface area, shortened ion transport path, and stable lamellar microsphere structure, the MnS0.5Se0.5-EOP electrodes deliver high reversible capacity (272.8 mAh g-1 at 0.1 A g-1), excellent rate capability (91.8 mAh g-1 at 2 A g-1), and satisfactory cyclic stability (82.1% capacity retention after 500 cycles at 1 A g-1). This study not only provides a powerful impetus for developing new types of manganese-based chalcogenides, but also puts forward a novel perspective for exploring the intrinsic mechanisms of in situ electrooxidation behavior.

10.
Chinese Journal of School Health ; (12): 766-769, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1036303

RESUMO

Abstract@#During the peirod of Republic of China, the rural economy in China was in a state of decline, with poor hygiene conditions and extremely low levels of physical health among children. Under such circumstances, Professor Chen Zhiqian established the first rural health pilot zone in China and created the Dingxian Model,and explored a path suitable for the development of rural school health services by conducting health education courses, cultivating good hygiene habits,examining and improving students physical health status, and carrying out health surveys among teachers and students. The above actions has accumulated valuable experiences for the exploration and practice of contemporary rural school health services.

11.
Opt Express ; 31(23): 38146-38164, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017928

RESUMO

In lens-based display systems, lens aberrations and depth of field (DoF) limitation often lead to blurring and distortion of reconstructed images; Meanwhile, expanding the display DoF will face a trade-off between horizontal resolution and axial resolution, restricting the achievement of high-resolution and large DoF three-dimensional (3D) displays. To overcome these constraints and enhance the DoF and resolution of reconstructed scenes, we propose a DoF expansion method based on diffractive optical element (DOE) optimization and image pre-correction through a convolutional neural network (CNN). This method applies DOE instead of the conventional lens and optimizes DOE phase distribution using the Adam algorithm, achieving depth-invariant and concentrated point spread function (PSF) distribution throughout the entire DoF range; Simultaneously, we utilize a CNN to pre-correct the original images and compensate for the image quality reduction introduced by the DOE. The proposed method is applied to a practical integral imaging system, we effectively extend the DoF of the DOE to 400 mm, leading to a high-resolution 3D display in multiple depth planes. To validate the effectiveness and practicality of the proposed method, we conduct numerical simulations and optical experiments.

12.
Opt Express ; 31(21): 34609-34625, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859213

RESUMO

This paper proposes a method that utilizes a dual neural network model to address the challenges posed by aberration in the integral imaging microlens array (MLA) and the degradation of 3D image quality. The approach involves a cascaded dual convolutional neural network (CNN) model designed to handle aberration pre-correction and image quality restoration tasks. By training these models end-to-end, the MLA aberration is corrected effectively and the image quality of integral imaging is enhanced. The feasibility of the proposed method is validated through simulations and optical experiments, using an optimized, high-quality pre-corrected element image array (EIA) as the image source for 3D display. The proposed method achieves high-quality integral imaging 3D display by alleviating the contradiction between MLA aberration and 3D image resolution reduction caused by system noise without introducing additional complexity to the display system.

13.
Clin Chim Acta ; 548: 117529, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640131

RESUMO

BACKGROUND: We investigated the interference of vitamin C (VitC), glycerol fructose, lipoprotein X (LpX) and lipemia on the analysis of serum lipids. METHODS: Serum were collected from 44 patients with VitC infusion, serum lipid concentrations before and after VitC auto-oxidation were compared. Serum of 31 patients with glycerol fructose infusion were collected, triglycerides (TG) measured by glycerol blanking and non-blanking reagents were compared. Forty-four serum samples suspected to contain LpX were collected, LDL-C measured by reagents from five manufacturers were compared. Lipemia samples were collected, LDL-C measured using five different reagents were compared. The interference rate was considered unacceptable if it was greater than 1/2 total allowable error (TEa). RESULTS: In patients with VitC infusion, the interference rates of TG and total cholesterol (TC) were -59% (-123%, -28%) and -15% (-21%, -11%), respectively. In patients with glycerol fructose infusion, the interference rate of TG was 13% (4%, 113%). LpX interference led to increased LDL-C results for most reagents. Lipemia caused great interference with LDL-C analysis. CONCLUSION: VitC, glycerol fructose, LpX and lipemia significantly interfered with lipid assays. The reagent formulation should be improved to get reliable results.


Assuntos
Ácido Ascórbico , Glicerol , Humanos , LDL-Colesterol , Bioensaio , Frutose , Triglicerídeos
14.
Opt Express ; 31(15): 25153-25164, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475327

RESUMO

The spatial frequency of the reconstructed image of planar computer-generated hologram(CGH) is limited by the sampling interval and the lack of thickness. To break through this limitation of planar CGH, we propose a new computer-generated volume hologram(CGVH) for full-color dynamic holographic three-dimensional(3D) display, and an iteration-free layered CGVH generation method. The proposed CGVH is equivalent to a volume hologram sampled discretely in three directions. The generation method employs the layered angular spectral diffraction to calculate the light field in the layered CGVH, and then encodes it into a CGVH. Numerical simulation results show that the CGVH can accurately reconstruct full-color 3D objects, where better imaging quality, more concentrated diffraction energy, denser reconstructed spatial frequency information, and larger viewing angle are achieved. The proposed CGVH is expected to be applied to realize dynamic modulation, wavelength multiplexing, and angle multiplexing in various optical fields in the future.

15.
Sci Robot ; 8(80): eade9548, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436970

RESUMO

The interest in exploring planetary bodies for scientific investigation and in situ resource utilization is ever-rising. Yet, many sites of interest are inaccessible to state-of-the-art planetary exploration robots because of the robots' inability to traverse steep slopes, unstructured terrain, and loose soil. In addition, current single-robot approaches only allow a limited exploration speed and a single set of skills. Here, we present a team of legged robots with complementary skills for exploration missions in challenging planetary analog environments. We equipped the robots with an efficient locomotion controller, a mapping pipeline for online and postmission visualization, instance segmentation to highlight scientific targets, and scientific instruments for remote and in situ investigation. Furthermore, we integrated a robotic arm on one of the robots to enable high-precision measurements. Legged robots can swiftly navigate representative terrains, such as granular slopes beyond 25°, loose soil, and unstructured terrain, highlighting their advantages compared with wheeled rover systems. We successfully verified the approach in analog deployments at the Beyond Gravity ExoMars rover test bed, in a quarry in Switzerland, and at the Space Resources Challenge in Luxembourg. Our results show that a team of legged robots with advanced locomotion, perception, and measurement skills, as well as task-level autonomy, can conduct successful, effective missions in a short time. Our approach enables the scientific exploration of planetary target sites that are currently out of human and robotic reach.

16.
FEBS Open Bio ; 13(7): 1375-1389, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254650

RESUMO

Myasthenia gravis (MG) is a common neuromuscular junction disorder and autoimmune disease mediated by several antibodies. Several studies have shown that genetic factors play an important role in MG pathogenesis. To gain insight into the epigenetic factors affecting MG, we report here genome-scale DNA methylation profiles of MG. DNA was extracted from eight MG patients and four healthy controls for genome-wide DNA methylation analysis using the Illumina HumanMethylation 850K BeadChip. Verification of pyrosequencing was conducted based on differential methylation positions. Subsequently, C2C12 and HT22 cell lines (derived from mouse) were treated with demethylation drugs. Transcribed mRNA of the screened differential genes was detected using quantitative real-time PCR. The control and MG group were compared, and two key probe positions were selected. The corresponding genes were CAMK1D and CREB5 (P < 0.05). Similarly, the myasthenic crisis (MC) and non-MC group were compared and four key probe positions were selected. The corresponding genes were SAV1, STK3, YAP1, and WWTR1 (P < 0.05). Subsequently, pyrosequencing was performed for verification, revealing that hypomethylation of CAMK1D was significantly different between the MG and control group (P < 0.001). Moreover, transcription of CREB5, PKD, YAP1, and STK3 genes in the C2C12 cells was downregulated (P < 0.05) after drug treatment, but only YAP1 mRNA was downregulated in HT22 cells (P < 0.05). This is the first study to investigate genome-scale DNA methylation profiles of MG using 850 K BeadChip. The identified molecular markers of methylation may aid in the prevention, diagnosis, treatment, and prognosis of MG.


Assuntos
Metilação de DNA , Miastenia Gravis , Animais , Camundongos , Metilação de DNA/genética , Epigenoma , Miastenia Gravis/genética , Miastenia Gravis/terapia , Biomarcadores , RNA Mensageiro/genética
17.
Front Genet ; 14: 1132654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065478

RESUMO

Background and aims: Dysplasminogenemia is a rare heritable disease caused by plasminogen (PLG) gene defects resulting in hypercoagulability. In this report we describe three notable cases of cerebral infarction (CI) complicated with dysplasminogenemia in young patients. Methods: Coagulation indices were examined on STAGO STA-R-MAX analyzer. PLG: A was analyzed using a chromogenic substrate-based approach using a chromogenic substrate method. All nineteen exons of PLG gene and their 5'and 3'flanking regions were amplified by Polymerase chain reaction (PCR). Suspected mutation was confirmed by reverse sequencing. Results: PLG activity (PLG:A) in proband 1 and 3 of his tested family members, proband 2 and 2 of his tested family members, and proband 3 and her father were all reduced to roughly 50% of normal levels. Sequencing led to the identification of a heterozygous c.1858G>A missense mutation in exon 15 of the PLG gene in these three patients and affected family members. Conclusion: We conclude that the observed reduction in PLG:A was the result of this p.Ala620Thr missense mutation in the PLG gene. The CI incidence in these probands may be attributable to the inhibition of normal fibrinolytic activity as a consequence of this heterozygous mutation.

18.
Natl Sci Rev ; 10(5): nwad045, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37056443

RESUMO

Physical characteristics of terrains, such as softness and friction, provide essential information for legged robots to avoid non-geometric obstacles, like mires and slippery stones, in the wild. The perception of such characteristics often relies on tactile perception and vision prediction. Although tactile perception is more accurate, it is limited to close-range use; by contrast, establishing a supervised or self-supervised contactless prediction system using computer vision requires adequate labeled data and lacks the ability to adapt to the dynamic environment. In this paper, we simulate the behavior of animals and propose an unsupervised learning framework for legged robots to learn the physical characteristics of terrains, which is the first report to manage it online, incrementally and with the ability to solve cognitive conflicts. The proposed scheme allows robots to interact with the environment and adjust their cognition in real time, therefore endowing robots with the adaptation ability. Indoor and outdoor experiments on a hexapod robot are carried out to show that the robot can extract tactile and visual features of terrains to create cognitive networks independently; an associative layer between visual and tactile features is created during the robot's exploration; with the layer, the robot can autonomously generate a physical segmentation model of terrains and solve cognitive conflicts in an ever-changing environment, facilitating its safe navigation.

20.
Angew Chem Int Ed Engl ; 62(10): e202214795, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478123

RESUMO

Protein and peptide drugs are predominantly administered by injection to achieve high bioavailability, but this greatly compromises patient compliance. Oral and transdermal drug delivery with minimal invasiveness and high adherence represent attractive alternatives to injection administration. However, oral and transdermal administration of bioactive proteins must overcome biological barriers, namely the gastrointestinal and skin barriers, respectively. The rapid development of new materials and technologies promises to address these physiological obstacles. This review provides an overview of the latest advances in oral and transdermal protein delivery, including chemical strategies, synthetic nanoparticles, medical microdevices, and biomimetic systems for oral administration, as well as chemical enhancers, physical approaches, and microneedles in transdermal delivery. We also discuss challenges and future perspectives of the field with a focus on innovation and translation.


Assuntos
Sistemas de Liberação de Medicamentos , Proteínas , Humanos , Administração Cutânea , Preparações Farmacêuticas , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA