Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833982

RESUMO

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Assuntos
Biodegradação Ambiental , Burkholderiales , Escherichia coli , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Burkholderiales/enzimologia , Escherichia coli/genética , Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
2.
Biomed Pharmacother ; 133: 111035, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254013

RESUMO

Outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have produced high pathogenicity and mortality rates in human populations. However, to meet the increasing demand for treatment of these pathogenic coronaviruses, accelerating novel antiviral drug development as much as possible has become a public concern. Target-based drug development may be a promising approach to achieve this goal. In this review, the relevant features of potential molecular targets in human coronaviruses (HCoVs) are highlighted, including the viral protease, RNA-dependent RNA polymerase, and methyltransferases. Additionally, recent advances in the development of antivirals based on these targets are summarized. This review is expected to provide new insights and potential strategies for the development of novel antiviral drugs to treat SARS-CoV-2 infection.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteínas não Estruturais Virais/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Humanos
3.
Biomolecules ; 9(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766233

RESUMO

Short oligopeptides are some of the most promising and functionally important amide bond-containing components, with widespread applications. Biosynthesis of these oligopeptides may potentially become the ultimate strategy because it has better cost efficiency and environmental-friendliness than conventional solid phase peptide synthesis and chemo-enzymatic synthesis. To successfully apply this strategy for the biosynthesis of structurally diverse amide bond-containing components, the identification and selection of specific biocatalysts is extremely important. Given that perspective, this review focuses on the current knowledge about the typical enzymes that might be potentially used for the synthesis of short oligopeptides. Moreover, novel enzymatic methods of producing desired peptides via metabolic engineering are highlighted. It is believed that this review will be helpful for technological innovation in the production of desired peptides.


Assuntos
Química Verde , Oligopeptídeos , Oligopeptídeos/síntese química , Oligopeptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA