Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Midwifery ; 139: 104181, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39321620

RESUMO

BACKGROUND: Breastfeeding Support Groups are deemed effective in promoting breastfeeding initiation and duration, but few studies have addressed the mothers' perspectives. RESEARCH AIM: To investigate the role and impact of Breastfeeding Support Groups on breastfeeding mothers in Ireland from the women's perspective. Specific objectives included the assessment over time of breastfeeding self-efficacy knowledge, use, and limitations of BSGs and whether they contributed towards women achieving their breastfeeding goals. METHODS: An online survey using an established, validated Breastfeeding Self-Efficacy tool and custom-designed questions was administered at two time points as part of a larger sequential explanatory mixed methods' design. Cultural Historical Activity Theory was used as the theoretical framework. RESULTS: Majority of respondents at Phase 1 (N = 978) were multiparous, urban dwellers, and breastfeeding more than twelve months. Mothers first attend Breastfeeding Support Groups primarily to meet other breastfeeding mothers with many attending multiple types of group formats weekly. Qualities considered extremely important in breastfeeding supporters were: personal breastfeeding experience breastfeeding knowledge empathy understanding and listening skills There was no statistical difference in breastfeeding self-efficacy over time (z = -1.296, p = .195, r = -0.06). CONCLUSIONS: Participants attend Breastfeeding Support Groups to 'meet other mothers' in a convenient and local location, and not necessarily for a problem. Breastfeeding Support Groups normalise breastfeeding through social support, with breastfeeding supporters providing knowledge, empathy, understanding listening, and personal breastfeeding experience. Breastfeeding self-efficacy was high and did not increase over time, suggesting mothers need to be highly efficacious in this cohort to breastfeed.

2.
J Cell Sci ; 137(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39239891

RESUMO

Land plants are astounding processors of information; due to their sessile nature, they adjust the molecular programs that define their development and physiology in accordance with the environment in which they dwell. Transduction of the external input to the respective internal programs hinges to a large degree on molecular signaling cascades, many of which have deep evolutionary origins in the ancestors of land plants and its closest relatives, streptophyte algae. In this Review, we discuss the evolutionary history of the defining factors of streptophyte signaling cascades, circuitries that not only operate in extant land plants and streptophyte algae, but that also likely operated in their extinct algal ancestors hundreds of millions of years ago. We hope this Review offers a starting point for future studies on the evolutionary mechanisms contributing to the current diversity and complexity of plant signaling pathways, with an emphasis on recognizing potential biases.


Assuntos
Plantas , Transdução de Sinais , Plantas/metabolismo , Plantas/genética , Evolução Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Proc Biol Sci ; 291(2027): 20240985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081174

RESUMO

Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.


Assuntos
Evolução Biológica , Embriófitas , Domínios Proteicos , Embriófitas/genética
5.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39058319

RESUMO

Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.


Assuntos
Aquaporinas , Eucariotos , Evolução Molecular , Filogenia , Eucariotos/genética , Eucariotos/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Aquaporinas/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química
6.
PLoS One ; 19(6): e0293376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905254

RESUMO

BACKGROUND: COVID-19 and its prevention measures have had a significant impact on patients with non-communicable diseases (NCDs) by disrupting routine healthcare service and increasing risk factors. These challenges were expected to be more severe in sub-Saharan Africa due to the lack of physical infrastructure and inadequate resources. The quantity of studies conducted was limited, and there was a lack of published systematic reviews in the specified region. This systematic review aimed to assess the indirect impacts of the COVID-19 pandemic and associated lockdown measures on individuals with non-communicable diseases (NCDs) in sub-Saharan African countries. METHOD: This systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and is registered with PROSPERO (ID CRD42023387755). Extensive searches were conducted in MEDLINE, EMBASE, and CINAHL databases in December 2023, supplemented by a manual search of references, grey literature, and the WHO COVID-19 database. Inclusion criteria encompassed studies that reported on the impact of COVID-19 on NCD patients in sub-Saharan African countries, focusing on access to care, health outcomes, and factors related to NCDs. Critical appraisal of study quality was performed using the Joanna Briggs Institute (JBI) analytical cross-sectional studies critical appraisal tool. Data were extracted and synthesized, highlighting the main findings and relevant limitations. FINDINGS: This review included 30 primary studies with a cumulative sample size of 25634 participants, conducted in seven sub-Saharan African countries. These studies demonstrated that the COVID-19 pandemic significantly disrupted regular NCD patient care provision, with regional variations. The studies also identified a reduction in patient health-seeking behavior and reduced medication adherence, leading to poor treatment outcome. Furthermore, the pandemic and related lockdowns have been implicated in the increased prevalence of substance use, decreased physical exercise, and increased mental health problems. CONCLUSION: This systematic review identified the complex challenges faced by NCD patients in sub-Saharan Africa during the COVID-19 pandemic. It also underlines the need to consider the indirect impact on vulnerable populations while developing pandemic prevention and control strategies for the future. The current NCD management strategies should prioritize the restoration of access to essential healthcare services while considering the multifaceted risks posed by decreased physical activity, poor dietary practices, and increased substance use. The main limitation of this review was the study design and setting. All of the studies included in this review employed a cross-sectional design, which may result in a low quality of evidence. This study identified research conducted in only seven countries among the 46 UN-classified sub-Saharan nations, which may impair the generalizability of the result.


Assuntos
COVID-19 , Doenças não Transmissíveis , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , África Subsaariana/epidemiologia , Doenças não Transmissíveis/epidemiologia , SARS-CoV-2 , Pandemias
7.
Ann Bot ; 134(3): 385-400, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38832756

RESUMO

The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes, hence particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae relative to land plants, but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits, such as intricate signalling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants but were bequeathed from their algal progenitors.


Assuntos
Evolução Biológica , Filogenia , Estreptófitas , Estreptófitas/genética , Estreptófitas/fisiologia
9.
Trends Ecol Evol ; 39(8): 771-784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849221

RESUMO

Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.


Assuntos
Inteligência Artificial , Classificação , Classificação/métodos , Biodiversidade , Genômica
10.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693345

RESUMO

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Assuntos
Embriófitas , Evolução Molecular , Filogenia , Transdução de Sinais , Transdução de Sinais/genética , Embriófitas/genética , Redes Reguladoras de Genes , Genoma/genética , Genoma de Planta
11.
New Phytol ; 243(2): 543-559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515227

RESUMO

Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.


Assuntos
Cloroplastos , Homeostase , Cloroplastos/metabolismo , Íons/metabolismo , Transporte de Íons , Fotossíntese
12.
Lancet Gastroenterol Hepatol ; 9(5): 448-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513683

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive disease with a dismal prognosis. Stage III locally advanced pancreatic cancer is considered unresectable and current palliative chemotherapy regimens only modestly improve survival. Guidelines suggest chemoradiation or stereotactic ablative body radiotherapy (SABR) could be beneficial in certain circumstances. Other local treatments such as irreversible electroporation could enhance patient outcomes by extending survival while preserving quality of life. We aimed to compare the efficacy and safety of MRI-guided SABR versus CT-guided percutaneous irreversible electroporation following standard FOLFIRINOX chemotherapy. METHODS: CROSSFIRE was an open-label, randomised phase 2 superiority trial conducted at the Amsterdam University Medical Centre (Amsterdam, Netherlands). Eligible patients were aged 18 years or older with confirmed histological and radiological stage III locally advanced pancreatic cancer. The maximum tumour diameter was 5 cm and patients had to be pretreated with three to eight cycles of FOLFIRINOX. Patients were randomly assigned (1:1) to MRI-guided SABR (five fractions of 8 Gy delivered on non-consecutive days) or CT-guided percutaneous irreversible electroporation using a computer-generated variable block randomisation model. The primary endpoint was overall survival from randomisation, assessed in the intention-to-treat population. Safety was assessed in the per-protocol population. A prespecified interim futility analysis was done after inclusion of half the original sample size, with a conditional probability of less than 0·2 resulting in halting of the study. The trial was registered at ClinicalTrials.gov, NCT02791503. FINDINGS: Between May 1, 2016, and March 31, 2022, 68 patients were enrolled and randomly assigned to SABR (n=34) or irreversible electroporation (n=34), of whom 64 were treated according to protocol. Of the 68 participants, 36 (53%) were male and 32 (47%) were female, with a median age of 65 years (IQR 57-70). Median overall survival from randomisation was 16·1 months (95% CI 12·1-19·4) in the SABR group versus 12·5 months (10·9-17·0) in the irreversible electroporation group (hazard ratio [HR] 1·39 [95% CI 0·84-2·30]; p=0·21). The conditional probability to demonstrate superiority of either technique was 0·13; patient accrual was therefore stopped early for futility. 20 (63%) of 32 patients in the SABR group versus 19 (59%) of 32 patients in the irreversible electroporation group had adverse events (p=0·8) and five (16%) patients in the SABR group versus eight (25%) in the irreversible electroporation group had grade 3-5 adverse events (p=0·35). The most common grade 3-4 adverse events were cholangitis (two [6%] in the SABR group vs one [3%] in the irreversible electroporation group), abdominal pain (one [3%] vs two [6%]), and pancreatitis (none vs two [6%]). One (3%) patient in the SABR group and one (3%) in the irreversible electroporation group died from a treatment-related adverse event. INTERPRETATION: CROSSFIRE did not identify a difference in overall survival or incidence of adverse events between MRI-guided SABR and CT-guided percutaneous irreversible electroporation after FOLFIRINOX. Future studies should further assess the added value of local ablative treatment over chemotherapy alone. FUNDING: Adessium Foundation, AngioDynamics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resultado do Tratamento , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Qualidade de Vida , Eletroporação , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
13.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501480

RESUMO

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Assuntos
Ceras , Ceras/metabolismo , Álcoois/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aciltransferases/metabolismo , Aciltransferases/genética , Evolução Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética
14.
Microb Biotechnol ; 17(3): e14429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483038

RESUMO

Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.


Assuntos
Compostos de Amônio , Fumarato Hidratase/genética , Ácido Glutâmico/metabolismo , Glutamato Desidrogenase/genética , Arginina , Nitrogênio/metabolismo
15.
Physiol Plant ; 176(2): e14244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480467

RESUMO

Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.


Assuntos
Sistema Enzimático do Citocromo P-450 , Plantas , Archaea/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo
16.
Cancers (Basel) ; 16(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38539527

RESUMO

With the rapidly evolving field of image-guided tumor ablation, there is an increasing demand and need for tools to optimize treatment success. Known factors affecting the success of (non-)thermal liver ablation procedures are the ability to optimize tumor and surrounding critical structure visualization, ablation applicator targeting, and ablation zone confirmation. A recent study showed superior local tumor progression-free survival and local control outcomes when using transcatheter computed tomography hepatic angiography (CTHA) guidance in percutaneous liver ablation procedures. This pictorial review provides eight clinical cases from three institutions, MD Anderson (Houston, TX, USA), Gustave Roussy (Paris, France), and Amsterdam UMC (Amsterdam, The Netherlands), with the intent to demonstrate the added value of real-time CTHA guided tumor ablation for primary liver tumors and liver-only metastatic disease. The clinical illustrations highlight the ability to improve the detectability of the initial target liver tumor(s) and identify surrounding critical vascular structures, detect 'vanished' and/or additional tumors intraprocedurally, differentiate local tumor progression from non-enhancing scar tissue, and promptly detect and respond to iatrogenic hemorrhagic events. Although at the cost of adding a minor but safe intervention, CTHA-guided liver tumor ablation minimizes complications of the actual ablation procedure, reduces the number of repeat ablations, and improves the oncological outcome of patients with liver malignancies. Therefore, we recommend adopting CTHA as a potential quality-improving guiding method within the (inter)national standards of practice.

17.
Sci Rep ; 14(1): 809, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191639

RESUMO

The ecosystem services offered by pollinators are vital for supporting agriculture and ecosystem functioning, with bees standing out as especially valuable contributors among these insects. Threats such as habitat fragmentation, intensive agriculture, and climate change are contributing to the decline of natural bee populations. Remote sensing could be a useful tool to identify sites of high diversity before investing into more expensive field survey. In this study, the ability of Unoccupied Aerial Vehicles (UAV) images to estimate biodiversity at a local scale has been assessed while testing the concept of the Height Variation Hypothesis (HVH). This hypothesis states that the higher the vegetation height heterogeneity (HH) measured by remote sensing information, the higher the vegetation vertical complexity and the associated species diversity. In this study, the concept has been further developed to understand if vegetation HH can also be considered a proxy for bee diversity and abundance. We tested this approach in 30 grasslands in the South of the Netherlands, where an intensive field data campaign (collection of flower and bee diversity and abundance) was carried out in 2021, along with a UAV campaign (collection of true color-RGB-images at high spatial resolution). Canopy Height Models (CHM) of the grasslands were derived using the photogrammetry technique "Structure from Motion" (SfM) with horizontal resolution (spatial) of 10 cm, 25 cm, and 50 cm. The accuracy of the CHM derived from UAV photogrammetry was assessed by comparing them through linear regression against local CHM LiDAR (Light Detection and Ranging) data derived from an Airborne Laser Scanner campaign completed in 2020/2021, yielding an [Formula: see text] of 0.71. Subsequently, the HH assessed on the CHMs at the three spatial resolutions, using four different heterogeneity indices (Rao's Q, Coefficient of Variation, Berger-Parker index, and Simpson's D index), was correlated with the ground-based flower and bee diversity and bee abundance data. The Rao's Q index was the most effective heterogeneity index, reaching high correlations with the ground-based data (0.44 for flower diversity, 0.47 for bee diversity, and 0.34 for bee abundance). Interestingly, the correlations were not significantly influenced by the spatial resolution of the CHM derived from UAV photogrammetry. Our results suggest that vegetation height heterogeneity can be used as a proxy for large-scale, standardized, and cost-effective inference of flower diversity and habitat quality for bees.


Assuntos
Asma , Ecossistema , Abelhas , Animais , Pradaria , Agricultura , Flores , Fotogrametria
18.
Curr Biol ; 34(3): 670-681.e7, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244543

RESUMO

Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.


Assuntos
Embriófitas , Estreptófitas , Filogenia , Evolução Biológica , Plantas/genética , Embriófitas/genética
19.
New Phytol ; 241(2): 703-714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37915144

RESUMO

Abscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions. ABA elicits its effects by binding to a family of soluble receptors found in monomeric and dimeric states, differing in their affinity to ABA and co-receptors. However, the in vivo significance of the biochemical differences between these receptors remains unclear. We took a gain-of-function approach to study receptor-specific functionality. First, we introduced activating mutations that enforce active ABA-bound receptor conformation. We then transformed Arabidopsis ABA-deficient mutants with the constitutive receptors and monitored suppression of the ABA deficiency phenotype. Our findings suggest that PYL4 and PYL5, monomeric ABA receptors, have differential activity in regulating transpiration and transcription of ABA biosynthesis and stress response genes. Through genetic and metabolic data, we demonstrate that PYR1, but not PYL5, is sufficient to activate the ABA positive feedback mechanism. We propose that ABA signaling - from perception to response - flows differently when triggered by different PYLs, due to tissue and transcription barriers, thus resulting in distinct circuitries.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo
20.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059656

RESUMO

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinação , Processos Heterotróficos , Lipase/metabolismo , Plântula/metabolismo , Esporos/metabolismo , Bryopsida/metabolismo , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA