Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 85(18): 750-766, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35698798

RESUMO

Stevia urticifolia Thunb. is an underexploited herb possessing bioactive flavonoids, saponins, and terpenoids. The aim of this study was to examine the antiproliferative and toxicogenetic properties of the ethyl acetate extract from Stevia urticifolia aerial parts (EtAcSur) upon Artemia salina, erythrocytes, Allium cepa and sarcoma 180 cells and fibroblasts, as well as in vivo studies on mice to determine systemic, macroscopic, and behavioral alterations and bone marrow chromosomal damage. The assessment using A. salina larvae and mouse blood cells revealed LC50 and EC50 values of 68.9 and 113.6 µg/ml, respectively. Root growth and mitosis were inhibited by EtAcSur, and chromosomal aberrations were detected only at 100 µg/ml. EtAcSur exhibited potent concentration-dependent viability reduction of S180 and L-929 cells and antioxidant capacity employing ABTS• and DPPH•. No previous in vivo studies were performed before with the EtAcSur. Signals of acute toxicity were not observed at 300 mg/kg. Physiological and toxicological investigations at 25 and 50 mg/mg/day i.p. for 8 days did not markedly change body or organ relative weights, nor patterns of spontaneous locomotor and exploratory activities. In contrast, clastogenic effects on bone marrow were found at 50 mg/mg/day. EtAcSur was found to (1) produce toxicity in microcrustaceans, (2) capacity as free radical scavenger, (3) antimitotic, cytotoxic and clastogenic activties upon vegetal and mammalian cells, and (4) lethality on both tumor and normal murine cells indistinctly. In vivo damage systemic effects were not remarkable and clinical signals of toxicity were not observed, suggesting the significant pharmacological potential of S. urticifolia for the development of antineoplastic agents.Abbreviations: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DMSO: dimethylsulfoxide; DPPH: 1,1-diphenyl-2-picrylhydrazyl; EC50: effective concentration 50%; EtAcSur: ethyl acetate extract from Stevia urticifolia aerial parts; Hb, hemoglobin; IC50: inhibitory concentration 50%; LC50,: lethal concentration 50%; MI: mitotic index; RBC, red blood cells; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.


Assuntos
Antimitóticos , Stevia , Animais , Antioxidantes/farmacologia , Mamíferos , Camundongos , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Toxicogenética
2.
Anticancer Agents Med Chem ; 21(15): 2023-2031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397274

RESUMO

BACKGROUND: Alpha-terpineol is monoterpene alcohol with anti-tumor activity against different tumor cell lines (lung, breast, leukemias and colorectal) through blockage of NF-kB expression, which play an important role in tumor cells growth. OBJECTIVE: Evaluate the antitumor activity of alpha-terpineol in murine Sarcoma 180 cell line. METHODS: For the tests, different cytotoxic and genotoxic assays were used, including Trypan blue, cytokinesis- blocked micronucleus assay, comet assay, agarose gel DNA fragmentation, flow cytometry and cell viability using fluorescence. Ascitic fluid cells from sarcoma 180 were obtained from Mus musculus peritoneal cavity and Alpha-terpineol was tested at 100, 250 and 500 µg/mL. Doxorubicin and Cisplatin were used as positive controls. RESULTS: Cytotoxic effects of alpha-terpineol were found in all concentrations tested, reducing cell viability in 50.9; 38.53; 30.82% at 100, 250 and 500 µg/mL, respectively. Alpha-terpineol induced genotoxic effects due to DNA fragmentation (increased frequency and index of damage), and was clastogenic by increased micronuclei formation, nucleoplasmic bridges and nuclear buds. DNA fragmentation and increased cell death indicated that alpha-terpineol can cause early, late, and necrotic apoptosis. CONCLUSION: Our data indicate that alpha-terpineol has antitumor activity revealed by cytogenetic mechanisms and / or loss of cell membrane integrity.


Assuntos
Antineoplásicos/farmacologia , Monoterpenos Cicloexânicos/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
3.
Biomed Pharmacother ; 126: 110004, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32145583

RESUMO

BACKGROUND: [6]-Gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone] is a phenolic substance reported for several ethnopharmacological usage by virtue of its antioxidant, antiemetic, anti-inflammatory and anticancer properties. This study assessed the antitumoral effects of [6]-Gingerol in primary cells of Sarcoma 180 as well as in peripheral blood lymphocytes of mice. METHODS: The effect of [6]-Gingerol was assessed by applying cytogenetic biomarkers as indicative of genotoxicity, mutagenicity and apoptosis. Ascitic liquid cells were treated with [6]-Gingerol at concentrations of 21.33, 42.66 and 85.33 µM and subjected to the cytotoxicity assays using Trypan blue test and the comet assay, as well as the cytokinesis-block micronucleus assay. Doxorubicin (6 µM) and hydrogen peroxide (85.33 µM) were used as positive controls. RESULTS: [6]-Gingerol, especially at concentrations of 42.66 and 85.33 µM, showed notable cytotoxicity in Sarcoma 180 cells by reducing cell viability and cell division rates via induction of apoptosis. Genotoxicity at the concentrations used was punctuated by the increase in the index and frequency of DNA damage in tested groups. [6]-Gingerol, at all concentrations tested, did not induce significant aneugenic and/or clastogenic effects. It did, however, induced other nuclear abnormalities, such as nucleoplasmic bridges, nuclear buds and apoptosis. The genotoxic effects observed in the cotreatment with H2O2 (challenge assay) employing neoplastic and healthy cells, indicated that [6]-Gingerol may induce oxidative stress. CONCLUSIONS: Observations suggest that [6]-Gingerol may be a candidate for pharmaceutical antitumoral formulations due to its cytotoxicity and to mechanisms associated with genetic instability generated by nuclear alterations especially by apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Sarcoma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos
4.
Biomed Pharmacother ; 115: 108873, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31003079

RESUMO

Gingerol - [6]-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone; [6]-G) - is a phenolic compound with several pharmacological properties. Herein, the aim of the study was to evaluate the toxicogenic effects of [6]-G on Artemia salina nauplii, Allium cepa, HL-60 cell line and Sarcoma 180 (S-180) ascitic fluid cells.For toxic and genotoxic analysis, it was used [6]-G concentrations of 5, 10, 20 and 40 µg mL-1. For cytotoxic evaluation using the MTT test (3- [4,5-dimethyl-thiazol-2-yl] -2,5-diphenyl tetrazolium bromide), serial [6]-G dilutions (1.56-100 µg mL-1) were performed, and S-180, HL-60 and peripheral blood mononuclear cells (PBMC) were treated for 72 h. The IC50 of [6]-G were 1.14, 5.73 and 11.18 µg mL-1 for HL-60, S-180 and PBMC, respectively, indicating a possible selectivity against tumor cell lines. At higher concentrations (>10 µg mL-1), toxicity and genotoxicity were observed in the A. cepa test, especially at 40 µg mL-1. Mechanisms indicating apoptosis, such as toxicity, cytotoxicity and nuclear abnormalities (bridges, fragments, delays, loose chromosomes and micronuclei) suggest that [6]-G has potential for antitumor pharmaceutical formulations.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bioensaio , Catecóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Álcoois Graxos/farmacologia , Animais , Artemia/efeitos dos fármacos , Catecóis/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Álcoois Graxos/administração & dosagem , Humanos , Camundongos , Cebolas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...