Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharm Res ; 37(4): 75, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32232574

RESUMO

PURPOSE: Doxorubicin (Dox) being a hydrophobic drug needs a unique carrier for the effective encapsulation with uniformity in the aqueous dispersion, cell culture media and the biological-fluids that may efficiently target its release at the tumor site. METHODS: Circular DNA-nanotechnology was employed to synthesize DNA Nano-threads (DNA-NTs) by polymerization of triangular DNA-tiles. It involved circularizing a linear single-stranded scaffold strand to make sturdier and rigid triangles. DNA-NTs were characterized by the AFM and Native-PAGE tests. Dox binding and loading to the Neuregulin1 (NRG1) functionalized DNA based nano-threads (NF-DBNs) was estimated by the UV-shift analysis. The biocompatibility of the blank NRG-1/DNA-NTs and enhanced cytotoxicity of the NF-DBNs was assessed by the MTT assay. Cell proliferation/apoptosis was analyzed through the Flow-cytometry experiment. Cell-surface binding and the cell-internalization of the NF-DBNs was captured by the double-photon confocal microscopy (DPCM). RESULTS: The AFM images revealed uniform DNA-NTs with the diameter 30 to 80 nm and length 400 to 800 nm. PAGE native gel was used for the further confirmation of the successful assembly of the strands to synthesize DNA-NTs that gave one sharp band with the decreased electrophoretic mobility down the gel. MTT assay showed that blank DNA-NTs were biocompatible to the cells with less cytotoxicity even at elevated concentrations with most of the cells (94%) remaining alive compared to the dose-dependent enhanced cytotoxicity of NF-DBNs further evidenced by the Flow-cytometry analysis. CONCLUSION: Uniform and stiffer DNA-NTs for the potential applications in targeted drug delivery was achieved through circular DNA scaffolding.

2.
Clin Cancer Res ; 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161121

RESUMO

PURPOSE: The tumor microenvironment plays a key role in cancer development and progression and is involved in resistance to chemo- and immunotherapy. Cancer-associated fibroblast expressing fibroblast activating protein α (FAPα) is one of the predominant stroma cell types and are involved in resistance to immunotherapy. EXPERIMENTAL DESIGN: We generated OMTX705, a novel antibody-drug conjugate from a humanized anti-FAP antibody linked to a new cytolysin. Here we studied its antineoplastic activity in vitro and in preclinical mouse models alone and in combination with chemotherapy as well as immunotherapy in PD1-resistant tumors. RESULTS: In Avatar models, OMTX705 showed a 100% tumor growth inhibition and prolonged tumor regressions as single agent and in combination with chemotherapy. Treatment re-challenge following treatment discontinuation induced additional tumor regression suggesting lack of treatment resistance. In a mouse model with a humanized immune system resistant to PD-1 inhibition, OMTX705 increased tumor infiltration by CD8+ T cells, induced complete regressions, and delayed tumor recurrence. CONCLUSIONS: These data suggest that FAP-targeting with OMTX705 represents a novel and potent strategy for cancer treatment including tumors resistant to immunotherapy and support its clinical development.

3.
J Infect Public Health ; 13(3): 414-417, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32144018

RESUMO

BACKGROUND: Avian influenza H9 is endemic in commercial and backyard poultry in Pakistan and is a serious occupational health hazard to industry workers. This study aimed to determine the seroprevalence of avian influenza H9 infection in people working with poultry in Rawalpindi, Pakistan and assess the measures they took to protect themselves from infection. METHODS: A cross-sectional study was conducted from December 2016 to May 2017 of 419 people working with poultry in Rawalpindi Division, including farm workers, vaccinators, field veterinarians, butchers and staff working in diagnostic laboratories. Potential participants were randomly approached and gave written consent to participate. Data were collected using a standardized questionnaire and serum samples were processed to detect H9 antibodies using the haemagglutination inhibition test. RESULTS: Of the 419 participants, 406 (96.9%) were male. The mean age of the participants was 36.4 (SD 10.86) years. A total of 332 participants agreed to a blood test, 167 of whom were positive for A(H9) antibodies, giving an overall seroprevalence of 50.3%. Laboratory staff had the highest seroprevalence (100%) and veterinarians the lowest (38.5%). Vaccinators, butchers and farm workers had a seroprevalence of 83.3%, 52.4% and 45.5% respectively. Personals who used facemasks had significantly lower (P<0.002) seroprevalence (29.6%) than those who never used them (90.6%). Similarly, those who always used gloves and washed their hands with soap had a seroprevalence of 32.8% compared with 89.0% in those who never took these precautions. Of the participants who handled antigens, 92.3% were seropositive. CONCLUSION: Laboratory staff and vaccinators are exposed to viral cultures and influenza vaccines respectively which may explain their high seroprevalence.

4.
Int J Biol Macromol ; 152: 525-534, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32112844

RESUMO

NPC1 is a large glycoprotein with 13 transmembrane-spanning domains, which plays a crucial biological role in cholesterol transport and metamorphosis of animals. However, the physiological functions of this gene have rarely been elucidated in insects. Here, we isolated the NPC1 gene from Bombyx mori (BmNPC1), sequenced and evaluated its physiological functions. BmNPC1 comprised of 3702 bp open reading frame, encoding a protein of 1233 amino acid residues. The recombinant protein was expressed, and anti-BmNPC1 antibodies were synthesized. Immunofluorescence assay revealed that BmNPC1 protein localized in the cytoplasm of the cells. The qRT-PCR analysis showed that BmNPC1 expression was most significant in the testis, followed by the malpighian tubules, hemocytes, and ovary. The knockdown of BmNPC1 by double-stranded RNA caused the accumulation of cholesterol in the cells. Furthermore, suppression of this gene influenced the expression of ecdysone-responsive genes and also prevented the molting in B. mori (Dazao) larvae. Overall, BmNPC1 may have different biological roles in the physiology of silkworm, B. mori (Dazao), since it regulates the cholesterol transport and molting process.

5.
Acta Trop ; 205: 105435, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32142734

RESUMO

An extended range of host susceptibility including camel has been evidenced for some of the important veterinary and public health pathogens, such as brucellosis, peste des petits ruminants (PPR) and bluetongue (BT). However, in disease endemic settings across many parts of the globe, most of the disease control interventions accounts for small and large ruminants, whereas unusual hosts and/or natural reservoirs, such as camels, remain neglected for disease control measures including routine vaccination. Such a policy drawback not only plays an important role in disease epizootiology particularly in settings where disease is endemic, but also serves an obstacle in disease control and subsequent eradication in future. With this background, using pre-validated ELISA and molecular assays [multiplex PCR, reverse transcriptase (RT)-PCR and real-time (rt)-PCR], we conducted a large-scale pathogen- and antibody-based surveillance for brucellosis, peste des petits ruminants and bluetongue in camel population (n = 992) originating from a wide geographical region in southern part of the Punjab province, Pakistan. Varying in each of the selected districts, the seroprevalence was found to be maximum for bluetongue [n = 697 (70.26%, 95% CI: 67.29-73.07)], followed by PPR [n = 193 (19.46%, 95% CI: 17.07-22.09)] and brucellosis [n = 66 (6.65%, 95% CI: 5.22-8.43)]. Odds of seroprevalence were more significantly associated with pregnancy status (non-pregnant, OR = 2.23, 95% CI: 1.86-5.63, p<0.01), farming system (mixed-animal, OR = 2.59, 95% CI: 1.56-4.29, p<0.01), breed (Desi, OR = 1.97, 95% CI: 1.28-4.03, p<0.01) and farmer education (illiterate, OR = 3.17, 95% CI: 1.45-6.93, p<0.01) for BTV, body condition (normal, OR = 3.54, 95% CI: 1.92-6.54, p<0.01) and breed (Desi, OR = 2.19, 95% CI: 1.09-4.40, p<0.01) for brucellosis, and feeding system for PPR (grazing, OR = 2.75, 95% CI: 1.79-4.22, p<0.01). Among the total herds included (n = 74), genome corresponding to BT virus (BTV) and brucellosis was detected in 14 (18.92%, 95 CI: 11.09-30.04) and 19 herds (25.68%, 95% CI: 16.54-37.38), respectively. None of the herds was detected with genome of PPR virus (PPRV). Among the positive herds, serotype 1, 8 and 11 were detected for BTV while all the herds were exclusively positive to B. abortus. Taken together, the study highlights the role of potential disease reservoirs in the persistence and transmission of selected diseases in their susceptible hosts and, therefore, urges necessary interventions (e.g., inclusion of camels for vaccine etc.) for the control of diseases from their endemic setting worldwide.

6.
Fish Shellfish Immunol ; 100: 436-444, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200070

RESUMO

The cathepsin C, a lysosomal cysteine protease, involves the modulation of immune and inflammatory responses in living organisms. However, the knowledge on cathepsin C in red swamp crayfish (Procambarus clarkii), a freshwater crustacean with economic values, remained unclear. In the present study, we provide identification and molecular characterization of cathepsin C from P. clarkii. (Hereafter Pc-cathepsin C). The Pc-cathepsin C cDNA contained a 1356 bp open reading frame that encoded a protein of 451 amino acid residues. The deduced amino acid sequence comprised of cathepsin C exclusion domain and pept_C1 domain, and also catalytic residues (Cys248, His395 and Asn417). Analysis of the transcriptional patterns of the Pc-cathepsin C gene revealed that it was broadly distributed in various tissues of P. clarkii, and it was more abundant in the hepatopancreas and gut. Following a challenge with viral and bacterial pathogen-associated molecular patterns, the expression of Pc-cathepsin C was strongly enhanced at different time points. The knockdown of Pc-cathepsin C, altered the expression of immune-responsive genes, suggesting its immunoregulatory role in P. clarkii. This study has identified and provided the immunoregulatory function of Pc-cathepsin C, which will contribute to further investigation of the molecular mechanism of cathepsin C in crustaceans.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32180393

RESUMO

Metal nanoclusters (NCs) have emerged as feasible alternatives to dyes and quantum dots in light energy conversion applications. Despite the remarkable enhancement in power conversion efficiency (PCE) in recent years and the increase in the number of NCs available as sensitizers, a comprehensive understanding of the various interfacial charge-transfer, transport, and recombination events in NCs is still lacking. This understanding is vital to the establishment of design principles for an efficient photoelectrode that uses NCs. In this work, we carefully design a comparison study of two representative NCs, Au and Ag, based on transient absorption spectroscopy and electrochemical impedance spectroscopy, methods that shed light on the true benefits and limitations of NC sensitizers. Low NC regeneration efficiency is the most critical factor that limits the performance of metal-nanocluster-sensitized solar cells (MCSSCs). The slow regeneration that results from sluggish hole transfer kinetics not only limits photocurrent generation efficiency but also has a profound effect on the stability of MCSSCs. This finding calls for urgent attention to the development of an efficient redox couple that has a great hole-extraction ability and no corrosive nature. This work also reveals different interfacial behaviors of Au and Ag NCs in photoelectrodes, suggesting that utilizing the benefits of both types of NCs simultaneously by cosensitization or using AuAg alloy NCs may be one avenue for further PCE improvement in MCSSCs.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32108466

RESUMO

Recently, multivalued logic (MVL) circuits have attracted tremendous interest due to their ability to process more data by increasing the number of logic states rather than the integration density. Here, we fabricate logic circuits based on molybdenum telluride (MoTe2)/black phosphorus (BP) van der Waals heterojunctions with different structural phases of MoTe2. Owing to the different electrical properties of the 2H and mixed 2H +1T' phases of MoTe2, tunable logic devices have been realized. A logic circuit based on a BP field-effect transistor (FET) and a BP/MoTe2 (2H + 1T') heterojunction FET displays the characteristics of binary logic. However, a drain voltage-controlled transition from binary to ternary logic has been observed in BP FET- and BP/ MoTe2 (2H) heterojunction FET-based logic circuits. Also, a change from binary to ternary characteristics has been observed in BP/MoTe2 (2H)-based inverters at low temperature below 240 K. We believe that this work will stimulate the assessment of the structural phase transition in metal dichalcogenides toward advanced logic circuits and offer a pathway to substantialize the circuit standards for future MVL systems.

9.
Dev Comp Immunol ; 106: 103638, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32017956

RESUMO

Small heat shock proteins (shsps) are conserved across invertebrate species. They are implicated in the modulation of various biological processes, such as immune responses, abiotic stress tolerance metamorphosis, and embryonic development. Herein, we identified a heat shock protein 20 from the red swamp crayfish, Procambarus clarkii (named as Pc-Hsp20), and performed in vivo studies to elucidate its physiological functions in the innate immunity. The open reading frame of Pc-Hsp20 was 609 base pair, encoding a protein of 202 amino acid residues with a hsp20/alpha crystallin family domain. Pc-Hsp20 was ubiquitously expressed in various tissues; however, it was highest in the hepatopancreas. The challenge with immune elicitors remarkably enhanced the transcript level of Pc-Hsp20 in the hepatopancreas when compared with the control. Administration of double-stranded RNA could significantly reduce expression of the Pc-Hsp20 mRNAs, and most of the immune-related genes expression enhanced with a variable concentration in the hepatopancreas. Altogether, these results suggest that Pc-Hsp20 may participate in innate immunity against microbial pathogens.

10.
J Pharm Biomed Anal ; 182: 113133, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004770

RESUMO

DNA based nano-carriers synthesized from short circular scaffolds (circular DNA nanotechnology) attains stiffer topology for ligand functionalization (neuregulin-1/NRG-1 ligand) and biological applications (targeted drug delivery). Daunorubicin (DR) is a hydrophobic chemical that requires robust vectors to efficiently encapsulate and avoid its free dispersion in water, biological media and cell culture. Here we design DNA nanospindels (DNA-NS) to efficiently load DR and target the (highly expressed) HER2/neu receptors on the plasma membrane of drug-resistant MCF-7 (breast cancer) cells. DNA-NS were synthesized by polymerizing the DNA-triangles (utilizing 84-nt short circular scaffold strand) into larger DNA nano-ribbons characterized by the native-PAGE testing. AFM results revealed the spinning of DNA nanoribbons on its (own) axis because of the intrinsic curvature of the DNA double helix resulting in the formation of the firm and twisted DNA-NS with the diameter (50-70 nm) and length (0.5-4 µm). DA loading onto DNA-NS was confirmed by the UV shift analysis. The MTT results with the blank DNA-NS evidenced its biocompatibility (remained value of 93%) compared to the decreased viability of the MCF-7 cells after treatment with DNA-NS (DR loaded). These findings were further supported by the analysis of cell proliferation/apoptosis through flow cytometry showing 64% apoptosis after treating with the DR loaded DNA-NS. Hence, through the short circular DNA nanotechnology, we have achieved a stiffer, uniform, and biocompatible DNA-NS for applications in the targeted therapy.

11.
Genes (Basel) ; 11(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940818

RESUMO

During the last few years, mitochondrial DNA has attained much attention as a modulator of immune responses. Due to common evolutionary origin, mitochondrial DNA shares various characteristic features with DNA of bacteria, as it consists of a remarkable number of unmethylated DNA as 2'-deoxyribose cytidine-phosphate-guanosine (CpG) islands. Due to this particular feature, mitochondrial DNA seems to be recognized as a pathogen-associated molecular pattern by the innate immune system. Under the normal physiological situation, mitochondrial DNA is enclosed in the double membrane structure of mitochondria. However, upon pathological conditions, it is usually released into the cytoplasm. Growing evidence suggests that this cytosolic mitochondrial DNA induces various innate immune signaling pathways involving NLRP3, toll-like receptor 9, and stimulator of interferon genes (STING) signaling, which participate in triggering downstream cascade and stimulating to produce effector molecules. Mitochondrial DNA is responsible for inflammatory diseases after stress and cellular damage. In addition, it is also involved in the anti-viral and anti-bacterial innate immunity. Thus, instead of entire mitochondrial importance in cellular metabolism and energy production, mitochondrial DNA seems to be essential in triggering innate anti-microbial immunity. Here, we describe existing knowledge on the involvement of mitochondrial DNA in the anti-microbial immunity by modulating the various immune signaling pathways.

12.
J Pak Med Assoc ; 70(1): 143-146, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31954040

RESUMO

Primitive epidermis develops the nail apparatus. Nails have a strong and inflexible nail plate at the end of each digit. Very few genes responsible for causing nonsyndromic form of nail dysplasia have been reported. In the current study, peripheral blood samples were collectedfrom three unaffected individuals and four affectedindividuals of Family A, while blood from two affected and three unaffected individuals were taken of Family B. Genotyping in both the families was performed using highly polymorphic short tandem repeat microsatellite markers. Sanger sequence of the FZD6 gene was performed and analysed for segregation analysis. A comparative modelling approach was used to predict the three-dimensional structures of FZD-6 protein using Modeller 4. Linkage analysis mapped a disease locus on chromosome 8q22.3, harbouring FZD6. Targeted Sanger sequencing of all the coding exons of FZD6 revealed a nonsense sequence variant in pedigree A, whereas a missense sequence variant in pedigree B. Finding and literature indicates the disease spectrum of Pakistani population with claw-shaped nail dysplasia, particularly in families of Pashtun origin.

13.
Drug Deliv Transl Res ; 10(1): 23-33, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31240626

RESUMO

We have used a novel active hydraulic ventricular support drug delivery system (ASD) device, which is a non-transplant surgical approach, can adhere to heart surface, and deliver the drug directly into the epicardium. This study is intended to compare the effect of administration of nitroglycerine (NTG) through ASD and intravenous injection on the ischemic injury during acute myocardial infarction (AMI). 30 male SD rats were allocated into five groups (n = 6): sham, AMI, I.V., ASD high dose (ASDH), and ASD low dose (ASDL) respectively. Ligation of the left anterior descending (LAD) coronary artery was performed to induce myocardial infarction. Electrocardiograms were monitored, and serum myoglobin (Mb) was assessed. Hemodynamics was observed on pre- and post-operation. Hematoxylin and eosin (H&E) staining was performed for histological diagnosis. In all model animals, ligation of LAD provoked ST segment elevation and Mb level augmentation. In ASDH group, Mb showed obvious decrease as compared with other treatment groups. Hemodynamic parameters showed significant improvement in ASDH and ASDL groups than the I.V. group. H&E staining showed that AMI group rats had wavy fibers and loss of transverse striations while ASD group rats had obvious improvement. Unlike the I.V. group, ASD group rats showed significant vasodilation. Therefore, delivery of NTG through ASD to the cardiomyocytes could improve the therapeutic efficacy. A novel effective route for local delivery of agents to manage AMI has been proved.

14.
Dev Comp Immunol ; 104: 103542, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31730828

RESUMO

Programmed cell death 2 (PDCD2) is a highly conserved eukaryotic protein indispensable for various physiological processes such as cell proliferation, development, and apoptosis. In the present study, we identified a Zinc finger protein RP-8 from the silkworm, Bombyx mori (BmZfrp8), the ortholog of PDCD2 protein. The quantitative real-time PCR analysis revealed the ubiquitous distribution of BmZfrp8 in the different tissues; however, the gene's transcription level was highest in those of the silk gland, testis, and ovary. Additionally, the expression levels of BmZfrp8 were unequal on different days of embryonic development, and it reached the highest level on the 5th day of early development. The challenge with pathogens influenced the expression level of BmZfrp8 in both hemocyte and fat body when compared with the control. Administration of 20-hydroxyecdysone significantly enhanced the BmZfrp8 expression in hemocyte. The knock-down of BmZfrp8 by double-stranded RNA suppressed the expression of developmental pathway associated genes as well as cell cycle-associated genes. Furthermore, the RNAi treated cells also showed cell cycle arrest compared to the control group. Taken together, BmZfrp8 may have a critical biological role in of B. mori, since it regulates the expression of the developmental pathway and cell cycle-associated genes.

15.
Dev Comp Immunol ; 104: 103561, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31785267

RESUMO

The suppressors of cytokine signaling (SOCS) are a family of intracellular molecules. Many members of this family have been reported to be involved in various physiological processes in invertebrates and vertebrates (e.g., developmental process and immune response). The functions of SOCS molecules seem to remain conserved in animals throughout evolutionary history. The members of the SOCS family play vital roles in the physiological processes by regulating the extent and duration of signaling activities of both Janus Kinase-Signal Transducer and Activators of Transcription (JAK-STAT) and epidermal growth factor receptor (EGFR) pathways in vivo. So far, in different insect species, a variable number of SOCS and SOCS box domain-containing proteins have been identified. These proteins are categorized into different types based on their sequence diversification, leading to an alteration in structure and regulatory function. The biological roles of the many SOCS proteins have been established as a negative or positive regulator of the signaling pathways, as mentioned earlier. Here, we discussed the existing knowledge on the SOCS proteins and their involvement in different biological functions in insects, and future perspectives to further elucidate their physiological roles.

16.
Int J Colorectal Dis ; 35(2): 213-222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823053

RESUMO

BACKGROUND: Melanosis coli (MC) is a colonoscopic finding in which the colonic mucosa appears darkly pigmented than usual and generally caused by extended anthranoid laxative use. METHODS: We performed a retrospective study at Zhuhai Hospital to investigate the risk of MC for CR neoplasm development. A total of 12,776 patients who underwent colonoscopy from 2013 to 2016 including 250 diagnosed with MC and 500 controls were included in this study. Odds ratios (OR) and 95% confidence intervals (95%CI) for associations of MC with CR neoplasm detection were estimated using univariate and multivariable multinomial logistic analyses for known risk factors. RESULTS: The presence of MC was associated with a significant increase in the CR neoplasm detection rate compared with controls (OR = 1.701, 95% CI = 1.252-2.31; P = 0.001). The effect was also observed in different tumor sites, age group, gender, and lifestyle. Using univariate multinomial analysis, patients with MC were significantly associated with both hyperplastic polyp (OR = 2.069, 95% CI = 1.253-3.415; P = 0.005) and low-grade (LG) adenoma (OR = 1.585, 95% CI = 1.115-2.254; P = 0.010). However, there was no significant difference with adenocarcinoma (OR = 1.701, 95% CI = 0.990-2.924; P = 0.055). Using multivariate multinomial analysis, MC patients remained associated with increased hyperplastic polyp (OR = 1.870, 95% CI = 1.119-3.125; P = 0.017) and LG adenoma (OR = 1.474, 95% CI = 1.027-2.114; P = 0.035), but not adenocarcinoma (OR = 1.620, 95% CI = 0.914-2.871; P = 0.098). A significant increase in CR neoplasm rate was observed with drinker, smoker, and elderly patients but not with gender. CONCLUSION: Patients with MC were more likely to have both hyperplastic polyp and LG adenoma. If confirmed, such findings could suggest the discontinuation of anthranoid laxative use particularly in the elderly.

17.
Int J Biol Macromol ; 143: 610-618, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836390

RESUMO

The heat shock 70/90 organizing protein is one of the stress-induced proteins and has extensively been studied in mammals. It mediates the interaction of Hsp70 and Hsp 90 as cochaperone and also implicated in infection-related processes. However, the biological role of heat shock 70/90 organizing protein in silkworm remains to elucidate. Herein, we identified and molecularly characterized a heat shock 70/90 organizing protein homolog gene from the silkworm, Bombyx mori (Hereafter BmHop). The identified BmHop fragment contained a 1626 base pair (bp) open reading frame (ORF), encoding a polypeptide of 541 amino acid residues. The deduced amino acid sequence had a molecular weight of 16.13 kDa and comprised of three tetratricopeptides repeated motif domains (TPR1, TPR2A, and TPR2B) as described in other Hops. Quantitative RT-PCR analysis revealed that BmHop ubiquitously transcribed in various tissues and developmental stages. Thermal stress strongly influenced the transcription levels of BmHop in both the fat body and hemocyte. Additionally, we analyzed the expression patterns of this gene after bacterial treatment, which strongly induced the gene's expression in the immune tissues. Overall, our data suggest that BmHop expression is influenced by both thermal stress and microbial challenge, and possibly in other insects.

18.
Cancers (Basel) ; 11(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817470

RESUMO

Sirtuin family members are characterized by either mono-ADP-ribosyltransferase or deacylase activity and are linked to various cancer-related biological pathways as regulators of transcriptional progression. Sirtuins play fundamental roles in carcinogenesis and maintenance of the malignant phenotype, mainly participating in cancer cell viability, apoptosis, metastasis, and tumorigenesis. Although sirtuin family members have a high degree of homology, they may play different roles in various kinds of cancer. This review highlights their fundamental roles in tumorigenesis and cancer development and provides a critical discussion of their dual roles in cancer, namely, as tumor promoters or tumor suppressors.

19.
J Pak Med Assoc ; 69(12): 1812-1816, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31853109

RESUMO

OBJECTIVE: To investigate the genetic factor responsible for causing microcephaly and determine allelic heterogeneity of Abnormal spindle microtubule gene. METHODS: The genetic study was conducted at the Kohat University of Science and Technology, Kohat, and Gomal University, D.I.Khan, Pakistan, during 2017-18, and comprised 5 consanguineous families from South Waziristan, Kurram Agency, Karak, Bannu and Dera Ismail Khan regions of the country's Khyber Pakhtukhwa province. Blood samples from all available and cooperative family members (including normal and affected) were obtained, and molecular analysis was carried out through whole genome single nucleotide polymorphisms genotyping, exome sequencing and Sanger sequencing. RESULTS: Of the 15 patients, 9(60%) were males and 6(40%) were females. Genetic mapping revealed linkage to the MCPH5 locus which harbours the microcephaly-associated abnormal spindle-like microcephaly gene. Mutation analysis of the gene identified missense mutation c.3978G>A (p.Trp1326*) in families A, B and C, a deletion mutation c.7782_7783delGA (p.(Lys2595Serfs*6)) in family D, and a splice site defect c.2936+5G>A in family E. CONCLUSIONS: There was suggestion of strong founder effect of mutation c.3978G>A (p.Trp1326*).

20.
Pathogens ; 8(4)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752369

RESUMO

Intercropping has been considered as a kind of a sustainable agricultural cropping system. In southwest China, maize/soybean strip intercropping has commonly been practised under local limited agricultural land resources. However, heavy rainfall in combination with high humidity and low temperatures cause severe pod and seed deterioration in the maturity and pre-harvesting stages of intercropped soybean. Numerous Fusarium species have been reported as the dominant pathogens of soybean root rot, seedling blight, as well as pod field mold in this area. However, the diversity and pathogenicity of Fusarium species on soybean pods remain unclear. In the current study, diseased soybean pods were collected during the cropping season of 2018 from five different intercropped soybean producing areas. A total of 83 Fusarium isolates were isolated and identified as F. fujikuroi, F. graminearum, F. proliferatum, and F. incarnatum-equiseti species complex based on morphological characteristics and phylogenetic analysis of the nucleotide sequence of EF1-α and RPB2 genes. Pathogenicity tests demonstrated that all Fusarium species were pathogenic to seeds of the intercropped soybean cultivar Nandou12. Fusarium fujikuroi had the maximum disease severity, with a significant reduction of seed germination rate, root length, and seed weight, followed by F. equiseti, F. graminearum, F. proliferatum, and F. incarnatum. Additionally, the diversity of Fusarium species on soybean pods was also considerably distinct according to the geographical origin and soybean varieties. Thus, the findings of the current study will be helpful for the management and resistance breeding of soybean pod decay in the maize/soybean intercropping system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA