Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Adapt Behav ; 31(1): 3-19, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36618906

RESUMO

We present three new diagnostic prediction problems inspired by classical-conditioning experiments to facilitate research in online prediction learning. Experiments in classical conditioning show that animals such as rabbits, pigeons, and dogs can make long temporal associations that enable multi-step prediction. To replicate this remarkable ability, an agent must construct an internal state representation that summarizes its interaction history. Recurrent neural networks can automatically construct state and learn temporal associations. However, the current training methods are prohibitively expensive for online prediction-continual learning on every time step-which is the focus of this paper. Our proposed problems test the learning capabilities that animals readily exhibit and highlight the limitations of the current recurrent learning methods. While the proposed problems are nontrivial, they are still amenable to extensive testing and analysis in the small-compute regime, thereby enabling researchers to study issues in isolation, ultimately accelerating progress towards scalable online representation learning methods.

2.
J Parasit Dis ; 46(4): 1164-1175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36457787

RESUMO

Avian coccidiosis is caused by genus Eimeria (E.) i.e. E. maxima, E. necatrix, E. tenella, E. acervulina, E. brunette and E. mitis and lead to three billion US dollar per year economic loss in poultry industry and reduces the growth performance of birds. To purge undesirable foreign agents, immune system produces a variety of molecules and cells that ultimately neutralize target particles in healthy organisms. However; when this particular system compromises, infection develops and the load of pathogens along with their virulence factors overcome both; innate and adaptive immune systems. Livestock and poultry sectors are important part of agriculture industry worldwide. Due to excessive use of chemotherapeutic agents, pathogens have developed resistance against these agents leading to the great economic losses. Numerous therapeutic approaches are in routine process for the treatment and prevention of various ailments but irrational use of antibiotics/chemicals has raised alarming concerns, like the development of drug resistant strains, residual effects in ultimate users and environmental pollution. These problems have led to the development of alternatives. In this regard, anticoccidial vaccine can be used as an alternative but due to high cost of production, plant derived biological response modifiers and antioxidants compounds are considered as a promising alternative. This review summarizes the immunotherapeutic effects of different compounds particularly with reference to avian coccidiosis.

3.
J Biomol Struct Dyn ; : 1-11, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300512

RESUMO

The multifunctional enzyme cyclin-dependent kinase 2 (CDK2) protein is essential for cell proliferation, transcription and modulation of the cell cycle. There is a dysfunction that is connected to various diseases, such as cancer, making it an important treatment target in oncology and beyond. The goal of this study is to identify novel CDK2 ATP binding site inhibitors using in silico drug designing. To find competitive inhibitors for the ATP site, molecular docking, molecular dynamics (MD) simulation and free-binding energy calculations were used. Natural compounds retrieved from marine sources (fungi and algae) were docked against protein, and the best-binding compounds were further evaluated using MD simulations. LIG1, LIG2 and LIG3 (ΔGPB = -19.98, -15.82 and -12.98 kcal/mol, respectively) were placed in the top positions based on their overall binding energy calculated using MMPBSA approach. Stability of the complexes was confirmed by carefully analyzing the rmsd and rmsf patterns retrieved from the MD trajectories. Several residues and areas (Leu124, Val123, Phe80, Leu83, Glu81, Arg 126, Asn132, Leu134, Gln131, Lys88 and Glu195) appear to be critical for inhibitor retention across the active pocket, according to RMSD and RMSF. The dynamics of the ligands inside the active pocket were mapped using principle component analysis. It has been observed that LIG1-3 appear to be the best possible inhibitors due to their high binding energies, interaction pattern and retention inside the active pocket. Communicated by Ramaswamy H. Sarma.

4.
Mol Biol Rep ; 49(12): 12039-12053, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309612

RESUMO

BACKGROUNDS: The BRASSINAZOLE-RESISTANT (BZR) family of transcription factors affects a variety of developmental and physiological processes and plays a key role in multiple stress-resistance functions in plants. However, the evolutionary relationship and individual expression patterns of the BZR genes are unknown in various crop plants. METHODS AND RESULTS: In this study, we performed a genome-wide analysis of the BZR genes family in wheat and rice. Here, we found a total of 16 and 6 proteins containing the BZR domain in wheat and rice respectively. The phylogenetic analysis divided the identified BZR proteins from several plants into five subfamilies. The intron/exon structural patterns and conserved motifs distribution revealed that BZR proteins exhibite high specificities in each subfamily. Moreover, the co-expression and protein-protein interaction analysis suggested that BZR proteins may interact/co-expressed with several other proteins to perform various functions in plants. The presence of different stresses, hormones and light-responsive cis-elements in promoter regions of BZR genes imply its diverse functions in plants. The expression patterns indicated that many BZR genes regulate organ development and differentiation. BZR genes significantly respond to exogenous application of brassinosteroids, melatonin and abiotic stresses, demonstrating its key role in various developmental and physiological processes. CONCLUSION: The present study establishes the foundation for future functional genomics studies of BZR genes through reverse genetics and to further explore the potential of BZR genes in mitigating the stress tolerance in crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Filogenia , Triticum/metabolismo , Estresse Fisiológico/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Família Multigênica
5.
Chem Biodivers ; 19(11): e202200521, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36149393

RESUMO

Convolvulus arvensis L. is an evergreen herb growing in various regions of Pakistan. Despite of several medicinal properties associated to this herb, it was not investigated scientifically for its bioactive compounds and detailed pharmaceutical properties. Therefore, its methanolic extract was divided into hexane (CA-H), chloroform (CA-C), ethyl acetate (CA-E) and butanol (CA-B) soluble fractions. CA-H and CA-C were found rich in phenolics (30.73±0.63 and 20.15±0.59 mg GAE/g of the extract, respectively), and the same fractions exhibited significant antioxidant activities (DPPH: 5.23±0.11 & 12.34±0.17 mg TE/g extract, respectively; ABTS: 36.82±0.04 & 56.74±0.61 mg TE/g extract, respectively). Also in CUPRAC activity assay, CA-H and CA-C exhibited highest activities as 87.30±0.46 and 56.74±0.61 mg TE/g extract, respectively, while CA-C was most active in FRAP activity assay with value of 40.21±2.19 mg TE/g extract. Total antioxidant capacity (1.23±0.033 mmol TE/g extract) was also found higher for CA-C, while CA-H activity was also comparable, however, CA-H showed higher metal chelating activity (22.74±0.001 mg EDTAE/g extract) than that of CA-C (17.55±0.22 mg EDTAE/g extract). These activities clearly revealed a direct relation between antioxidant potential and phenolic contents of CA-H and CA-C. In AChE and BChE inhibitory assay, CA-H and CA-E showed better inhibition (AChE: 8.24±0.77 & 4.46±0.007 mg GALAE/g extract; BChE: 5.40±0.02 & 1.92±0.24 mg GALAE/g extract) as compared to other fractions, whereas, against tyrosinase, CA-B was most active (37.35±0.53 mg KAE/g extract). CA-H and CA-C also showed higher inhibitory potential (0.98±0.08 & 0.58±0.01 mmol ACAE/g extract) against α-Amylase; while against α-Glucosidase, CA-E was the most active fraction. UHPLC/MS analysis of the methanolic extract of C. arvensis disclosed the presence of 62 compounds as sterols, triterpenes, flavonoids, fatty acids, alkaloids and coumarins. In Multivariate Analysis, the total phenolic contents were correlated strongly with all antioxidant assays except FRAP and DPPH. Regarding enzyme inhibitory properties, only AChE, BChE and α-amylase were correlated with the total phenolic contents in the extracts. Docking analyses confirmed these findings, as identified compounds had high binding free energy and inhibition constants with the enzymes studied. It was finally concluded that C. arvensis is a potential industrial crop, which can be a component of nutraceuticals and functional foods, if evaluated for its toxicity.


Assuntos
Antioxidantes , Convolvulus , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , alfa-Amilases , Fenóis/química , Metanol/química , Análise Multivariada , Indústria Farmacêutica , Recursos Naturais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise
6.
Plants (Basel) ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807609

RESUMO

Plant photosynthesis and biomass production are closely associated traits but critical to unfavorable environmental constraints such as salinity and drought. The relationships among stress tolerance, photosynthetic mechanisms, biomass and ethanol yield were assessed in Phragmites karka. The growth parameters, leaf gas exchange and chlorophyll fluorescence of P. karka were studied when irrigated with the control and 100 and 300 mM NaCl in a nutrient solution and water deficit conditions (drought, at 50% water holding capacity). The plant shoot fresh biomass was increased in the low NaCl concentration; however, it significantly declined in high salinity and drought. Interestingly the addition of low salinity increased the shoot biomass and ethanol yield. The number of tillers was increased at 100 mM NaCl in comparison to the control treatment. High salinity increased the photosynthetic performance, but there were no significant changes in drought-treated plants. The saturated irradiance (Is) for photosynthesis increased significantly in low salinity, but it declined (about 50%) in high salt-stressed and (about 20%) in drought-treated plants compared to the control. The rates of dark respiration (Rd) and compensation irradiance (Ic) were decreased significantly under all treatments of salinity and drought, with the exception of unchanged Rd values in the control and drought treatments. A-Ci curve analyses revealed a significant improvement in the Jmax, Vc, max, and triose-phosphate utilization (TPU) at lower salinity levels but decreased at 300 mM NaCl and drought treatments compared to the control. In the chlorophyll fluorescence parameters (Fv/Fm, maximum photochemical quantum yield of PSII, and Y(NO)), the non-photochemical yields were not affected under the salt and drought treatments, although an effective photochemical quantum yield (YII) and electron transport rate (ETR) were significantly enhanced in water deficit compared to control plants. P. karka regulates an efficient photosynthesis mechanism to grow in saline and arid areas and can therefore be used as a sustainable biofuel crop.

7.
Health Secur ; 20(4): 308-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35861848

RESUMO

There is a dearth of knowledge regarding transmission of Cryptosporidium (C) and Giardia (G) species through water and water-related sources in Pakistan. To this end, we conducted a study to evaluate the prevalence of these parasites in different water bodies, soil, and mixed raw vegetables in Pakistan. Researchers collected 200 samples from each reservoir including municipal water, sewage water, canal water, raw vegetables, soil of public parks, and soil of grazing areas. Researchers amplified the 18S ribosomal RNA gene of parasites using newly designed genus-specific primers through polymerase chain reaction testing. The sequencing analysis revealed that the obtained sequences belonged to C parvum and G lamblia. Phylogenetic clustering and sequence analysis of C parvum showed that the C parvum Pak1 (OM540369) and C parvum Pak2 (OM540370) as well as C parvum Pak3 (OM510450) and C parvum Pak6 (OM510445) were closely similar to each other. In the case of G lamblia, all the sequences appeared in the same clade. The epidemiological data showed lower prevalence of C parvum (11.5%) in all reservoirs, compared with G lamblia (20.5%). Among different reservoirs, prevalence of Cryptosporidium and Giardia was observed in sewage water (C = 13%, G = 26.5%), municipal water (C = 10%, G = 35%), canal water (C = 9.5%, G = 18.5%), raw vegetables (C = 5.5%, G = 8%), soil of public parks (C = 13%, G = 14%), and soil of grazing areas (C = 18.5%, G = 21.5%). Among targeted risk factors, poor hygienic conditions significantly affected the prevalence of parasites in sewage water (C = 20%, G = 41.2%), municipal water (C = 14.7%, G = 48.8.5%), raw vegetables (C = 11.3%, G = 15.1%), and soil of public parks (C = 19.5%, G = 21.9%). Similarly, contamination with sewage waste significantly affected (P < .05) the prevalence of these parasites in municipal water (C = 13.6%, G = 41.1%), canal water (C = 13.3%, G = 25%), raw vegetables (C = 12.1%, G = 15.1%), and soil of public parks (C = 23.3%, G = 15%). Results of this study illustrated a high risk of parasitic zoonosis through water bodies, soil, and vegetables.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Giardia lamblia , Giardíase , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium parvum/genética , Giardia lamblia/genética , Giardíase/parasitologia , Humanos , Epidemiologia Molecular , Paquistão/epidemiologia , Filogenia , Esgotos/parasitologia , Solo , Verduras/genética , Água , Quinases Ativadas por p21/genética
8.
Life (Basel) ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629416

RESUMO

Protozoa, helminths and ectoparasites are the major groups of parasites distributed worldwide. Currently, these parasites are treated with chemotherapeutic antiprotozoal drugs, anti-helminthic and anti-ectoparasitic agents, but, with the passage of time, resistance to these drugs has developed due to overuse. In this scenario, nanoparticles are proving to be a major breakthrough in the treatment and control of parasitic diseases. In the last decade, there has been enormous development in the field of nanomedicine for parasitic control. Gold and silver nanoparticles have shown promising results in the treatments of various types of parasitic infections. These nanoparticles are synthesized through the use of various conventional and molecular technologies and have shown great efficacy. They work in different ways, that include damaging the parasite membrane, DNA (Deoxyribonucleic acid) disruption, protein synthesis inhibition and free-radical formation. These agents are effective against intracellular parasites as well. Other nanoparticles, such as iron, nickel, zinc and platinum, have also shown good results in the treatment and control of parasitic infections. It is hoped that this research subject will become the future of modern drug development. This review summarizes the methods that are used to synthesize nanoparticles and their possible mechanisms of action against parasites.

9.
Saudi J Biol Sci ; 29(3): 1559-1564, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280581

RESUMO

The Hepatitis B virus (HBV) infection is one of the most widespread viral infections of humans. HBV causes acute and chronic hepatitis. Chronic hepatitis leads to hepatocellular carcinoma, which is a significant cause of death. DNA-based immunization programs to control the spread of Hepatitis B in developing countries are costly and require special storage and transportation. The alternative way is to express Hepatitis B surface antigen (HBsAg) in plants to develop oral vaccines. In this study, HBsAg gene was isolated, cloned, and then transformed in tomato plants. The transgenic tomato plants were confirmed through RT-qPCR. HBsAg expression was analysed in mature green and red stages of tomato fruit through quantitative real-time PCR. It was observed that expression of HBsAg was high in matured red tomato as compared to mature green. The present study is the first step to developing Solanum lycopersicum as an edible vaccine production system in this world region.

10.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163165

RESUMO

Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Animais , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
11.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216260

RESUMO

Heat stress affects granulosa cells and the ovarian follicular microenvironment, ultimately resulting in poor oocyte developmental competence. This study aims to investigate the metabo-lomics response of bovine granulosa cells (bGCs) to in vitro acute heat stress of 43 °C. Heat stress triggers oxidative stress-mediated apoptosis in cultured bGCs. Heat-stressed bGCs exhibited a time-dependent recovery of proliferation potential by 48 h. A total of 119 metabolites were identified through LC-MS/MS-based metabolomics of the spent culture media, out of which, 37 metabolites were determined as differentially involved in metabolic pathways related to bioenergetics support mechanisms and the physical adaptations of bGCs. Multiple analyses of metabolome data identified choline, citric acid, 3-hydroxy-3-methylglutaric acid, glutamine, and glycocyamine as being upregulated, while galactosamine, AICAR, ciliatine, 16-hydroxyhexadecanoic acid, lysine, succinic acid, uridine, xanthine, and uraconic acid were the important downregulated metabolites in acute heat stress. These differential metabolites were implicated in various important metabolic pathways directed towards bioenergetics support mechanisms including glycerophospholipid metabolism, the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and serine, threonine, and tyrosine metabolism. Our study presents important metabolites and metabolic pathways involved in the adaptation of bGCs to acute heat stress in vitro.


Assuntos
Células da Granulosa/metabolismo , Resposta ao Choque Térmico/fisiologia , Metaboloma/fisiologia , Animais , Apoptose/fisiologia , Bovinos , Doenças dos Bovinos/metabolismo , Células Cultivadas , Cromatografia Líquida/métodos , Feminino , Temperatura Alta , Metabolômica/métodos , Estresse Oxidativo/fisiologia , Espectrometria de Massas em Tandem/métodos
12.
Neuroimage ; 252: 119014, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202813

RESUMO

The measurement of quantitative, tissue-specific MR properties, e.g., water content, longitudinal relaxation time (T1) and effective transverse relaxation time (T2⁎), using quantitative MRI at a clinical field strength (1.5 T to 3T) is a well-explored topic. However, none of the commonly used standard brain atlases, such as MNI or JHU, provide quantitative information. Within the framework of quantitative MRI of the brain, this work reports on the development of the first quantitative brain atlas for tissue water content at 3T. A methodology to create this quantitative atlas of in vivo brain water content based on healthy volunteers is presented, and preliminary, practical examples of its potential applications are also shown. Established methods for the fast and reliable measurement of the absolute water content were used to achieve high precision and accuracy. Water content and T2⁎ were mapped based on two different methods: an intermediate-TR, two-point method and a long-TR, single-scan method. Twenty healthy subjects (age 25.3 ± 2.5 years) were examined with these quantitative imaging protocols. The images were normalised to MNI stereotactic coordinates, and water content atlases of healthy volunteers were created for each method and compared. Regions-of-interest were generated with the help of a standard MNI template, and water content values averaged across the ROIs were compared to water content values from the literature. Finally, in order to demonstrate the strength of quantitative MRI, water content maps from patients with pathological changes in the brain due to stroke, tumour (glioblastoma) and multiple sclerosis were voxel-wise compared to the healthy brain. The water content atlases were largely independent of the method used to acquire the individual water maps. Global grey matter and white matter water content values between the methods agreed with each other to within 0.5 %. The feasibility of detecting abnormal water content in the brains of patients based on comparison to a healthy brain water content atlas was demonstrated. In summary, the first quantitative water content brain atlas in vivo has been developed, and a voxel-wise assessment of pathology-related changes in the brain water content has been performed. These results suggest that qMRI, in combination with a water content atlas, allows for a quantitative interpretation of changes due to disease and could be used for disease monitoring.


Assuntos
Água , Substância Branca , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Adulto Jovem
13.
PLoS One ; 17(2): e0263604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192648

RESUMO

Ethnobotanical field surveys were carried out in the Tanawal area of the Lesser Himalayan Region, Khyber Pakhtunkhawa, Province from April 2016 to October 2017. The area is located between 34.36 (34° 21' 30 N) latitude and 73.07 (73° 4' 0 E) longitude with an average elevation of 1374 meters above sea level. Ethnomedicinal data were collected through Participatory Rural Appraisal (PRA), and participants were selected through the snow-boll technique. Semi-structured, in-depth and open-ended interviews were conducted. The data were quantitatively evaluated using ethnomedicinal indices i.e. Relative frequency of citation (RFCs), Fidelity level (FL), and Use Value (UV). The ethnobotanical data were also comparatively analyzed through the Jaccard Index (JI). The study yielded 66 medicinal plants in 62 genera and 43 families. Asteraceae and Solanaceae were the most important families with five medicinal taxa each. Regarding medicinal plant part utilization, leaves (43.28%) were used predominantly, followed by whole plant (14.92%) and fruits (14.92%). Decoction was the main drug formulation applied to 21 species (31.15%) and the oral route was most common (56.1%) while 31.2% of medicinal plants were used for both oral and topical applications. Fifty health disorders were recorded and grouped in 15 categories. Maximum species were used to treat gastrointestinal disorders i.e. 13 species, dermal problems (12 species), and respiratory tract ailments (9). The calculated RFCs ranged between 81 to 31. The most important medicinal plants were Acacia modesta, Citrullus vulgaris, Tamarindus indica, and Momordica charantia with an RGFC of 81 each. The UV ranged between 0.58 and 3.6. Medicinal taxa with the highest UV were Dioscorea deltoidea (3.6), Withania coagulans (3.3), Momordica charantia (3.5), Silybum marianum and Pyrus pashia (3.2). FL values showed that 28 (41.79%) species had a FL value below 50 (74.62%) while 39 (58.20%) had higher FL values. Momordica charantia, Tamarindus indica, Acacia modesta and Citrullus vulgaris were 95.2 each. The Jaccard Index (JI) values ranged from16.77 to 0.98. The current study also reported 16 medicinal plants, commonly used around the globe, have been rarely documented for their medicinal values in the local ethnomedicinal literature i.e. Althaea officinalis, Plantanus orientalis, Jasminum sombac, Maytenus royleana, Cucurbita maxima, Phyllanthus emblica, Citrullus vulgaris. Polygonatum verticilliatum, Caseria tomentosa, Cistanche tubulosa, Bambusa arundinacea, Schinus molle, Tamarindus indica, Pongamia pinnata, Citrus limon and Catharanthus roseus. However, 48 medicinal plants had been reported in the literature but the current study reported their novel medicinal uses. Important taxa should be established in botanical gardens for in-situ conservation, chemical investigation and sustainable utilization. It would also be effective to improve the livelihoods of the local population.


Assuntos
Asteraceae/química , Etnobotânica/métodos , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Solanaceae/química , Acacia/química , Asteraceae/classificação , Citrullus/química , Frutas/química , Humanos , Medicina Tradicional/métodos , Momordica charantia/química , Paquistão , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Solanaceae/classificação , Tamarindus/química
14.
Metabolites ; 12(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35050182

RESUMO

Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.

15.
Microsc Res Tech ; 85(5): 1703-1712, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34913538

RESUMO

This study highlighted the taxonomic utilization of palynological metaphors for selected members (53) of family Poaceae. Multiple microscopic technique light and scanning electrons had been employed for detailed analysis. Results reported monad pollen type in all studied 53 members, which showed its limited taxonomic value up to family level. In relation to shape of pollen both polar and equatorial views strikingly differed from each other. Like semi angular pollen observed in Dactyloctenium aegyptium (L.) Wild. whereas round-minutely irregular pollen in Lolium temulentum L. Polar and equatorial diameter also showed variation, that is, Desmostachya bipinnata (L.) Stapf. can be differentiated from Sorghum bicolor (L.) Moench on diameter variation basis. A pore characteristic does not show much qualitative variation; however pore sizes differ species to species. The most frequently scarbate sculpturing was observed in 28 species followed by verrucate. Hence it can be said that pollen shape, polar, and equatorial diameters, pore size, P/E ratio, pore sculpturing are of good taxonomic value and holds a significant position in identification and delimitation of Poaceae taxa.


Assuntos
Elétrons , Metáfora , Microscopia Eletrônica de Varredura , Poaceae , Pólen/ultraestrutura
16.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769113

RESUMO

The increasing numbers of infections caused by multidrug-resistant (MDR) pathogens highlight the urgent need for new alternatives to conventional antibiotics. Antimicrobial peptides have the potential to be promising alternatives to antibiotics because of their effective bactericidal activity and highly selective toxicity. The present study was conducted to investigate the antibacterial, antibiofilm, and anti-adhesion activities of different CTP peptides (CTP: the original hybrid peptide cathelicidin 2 (1-13)-thymopentin (TP5); CTP-NH2: C-terminal amidated derivative of cathelicidin 2 (1-13)-TP5; CTPQ: glutamine added at the C-terminus of cathelicidin 2 (1-13)-TP5) by determining the minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), propidium iodide uptake, and analysis by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy). The results showed that CTPs had broad-spectrum antibacterial activity against different gram-positive and gram-negative bacteria, with MICs against the tested strains varying from 2 to 64 µg/mL. CTPs at the MBC (2 × MIC 64 µg/mL) showed strong bactericidal effects on a standard methicillin-resistant Staphylococcus aureus strain ATCC 43300 after co-incubation for 6 h through disruption of the bacterial membrane. In addition, CTPs at 2 × MIC also displayed effective inhibition activity of several S. aureus strains with a 40-90% decrease in biofilm formation by killing the bacteria embedded in the biofilms. CTPs had low cytotoxicity on the intestinal porcine epithelial cell line (IPEC-J2) and could significantly decrease the rate of adhesion of S. aureus ATCC 43300 on IPEC-J2 cells. The current study proved that CTPs have effective antibacterial, antibiofilm, and anti-adhesion activities. Overall, this study contributes to our understanding of the possible antibacterial and antibiofilm mechanisms of CTPs, which might be an effective anti-MDR drug candidate.


Assuntos
Catelicidinas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Timopentina , Biofilmes/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana
17.
Antibiotics (Basel) ; 10(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34827365

RESUMO

This study aimed to investigate the effects of Bacillus amyloliquefaciens LFB112 on the growth performance, carcass traits, immune response, and serum biochemical parameters of broiler chickens. A total of 396 1 day old, mixed-sex commercial Ross 308 broilers with similar body weights were allotted into six treatment groups. The assigned groups were the CON group (basal diet with no supplement), AB (antibiotics) group (basal diet + 150 mg of aureomycin/kg), C+M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 powder with vegetative cells + metabolites), C group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 vegetative cell powder with removed metabolites), M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 metabolite powder with removed vegetative cells), and CICC group (basal diet + 5 × 108 CFU/kg Bacillus subtilis CICC 20179). Results indicated that chickens in the C+M, C, and M groups had higher body weight (BW) and average daily gain (ADG) (p < 0.05) and lower feed conversion ratio (FCR) (p = 0.02) compared to the CON group. The C+M group showed the lowest abdominal fat rate compared to those in the CON, AB, and CICC groups (p < 0.05). Compared to the CON group, serum IgA and IgG levels in the C+M, C, and M groups significantly increased while declining in the AB group (p < 0.05). B. amyloliquefaciens LFB112 supplementation significantly reduced the serum triglyceride, cholesterol, urea, and creatinine levels, while increasing the serum glucose and total protein (p < 0.05). In conclusion, B. amyloliquefaciens LFB112 significantly improved the growth performance, carcass traits, immunity, and blood chemical indices of broiler chickens and may be used as an efficient broiler feed supplement.

18.
Mol Biol Rep ; 48(9): 6581-6588, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432219

RESUMO

Helminths are the old dirty friends of humans from decades and may live undetected by the immune system for years in the tissues. They have evolved as good experts at subverting the immune system. Despite of their pathogenicity, they provide protection to their host against certain inflammatory diseases such as diabetes by modulating the immune mechanisms. These parasites are extra-cellular and induce Th2 response which triggers the adaptive immune cells as well as innate immune cells to work synergistically allowing Tregs to work in a toll-like receptor-dependent manure. T-helper cells type-2 also secrete certain anti-inflammatory cytokines including IL-4, IL-10, IL-13 and TGF-ß which also provide protection against type-1 diabetes. Several helminths such as T. crassiceps, S. venezuelensis, filarial worms, Schistosoma spp. and T. spiralis have been reported to prevent diabetes in mouse models as well as in some clinical trials. Immunomodulatory talent of helminths is receiving greater attention to prevent diabetes. Herein, an attempt has been made to review and highlight the possible immuno-modulatory mechanisms by which helminths provide protection against diabetes. Moreover, this review also emphasizes on the use of helminth-derived molecules or synthetic derivatives of helminth-antigens in clinical trials to overcome rapidly growing autoimmune disorders including diabetes.


Assuntos
Imunidade Adaptativa , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Helmintíase/imunologia , Helmintos/imunologia , Imunidade Inata , Animais , Antígenos de Helmintos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Helmintíase/parasitologia , Humanos , Camundongos , Linfócitos T Reguladores/imunologia , Células Th2/imunologia
19.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204328

RESUMO

The use of experimental relations to approximate the efficient thermophysical properties of a nanofluid (NF) with Cu nanoparticles (NPs) and hybrid nanofluid (HNF) with Cu-SWCNT NPs and subsequently model the two-dimensional pulsatile Casson fluid flow under the impact of the magnetic field and thermal radiation is a novelty of the current study. Heat and mass transfer analysis of the pulsatile flow of non-Newtonian Casson HNF via a Darcy-Forchheimer porous channel with compliant walls is presented. Such a problem offers a prospective model to study the blood flow via stenosed arteries. A finite-difference flow solver is used to numerically solve the system obtained using the vorticity stream function formulation on the time-dependent governing equations. The behavior of Cu-based NF and Cu-SWCNT-based HNF on the wall shear stress (WSS), velocity, temperature, and concentration profiles are analyzed graphically. The influence of the Casson parameter, radiation parameter, Hartmann number, Darcy number, Soret number, Reynolds number, Strouhal number, and Peclet number on the flow profiles are analyzed. Furthermore, the influence of the flow parameters on the non-dimensional numbers such as the skin friction coefficient, Nusselt number, and Sherwood number is also discussed. These quantities escalate as the Reynolds number is enhanced and reduce by escalating the porosity parameter. The Peclet number shows a high impact on the microorganism's density in a blood NF. The HNF has been shown to have superior thermal properties to the traditional one. These results could help in devising hydraulic treatments for blood flow in highly stenosed arteries, biomechanical system design, and industrial plants in which flow pulsation is essential.


Assuntos
Cobre , Hemodinâmica , Hidrodinâmica , Nanopartículas Metálicas , Modelos Cardiovasculares , Fluxo Pulsátil , Algoritmos , Artérias/patologia , Artérias/fisiopatologia , Circulação Sanguínea , Constrição Patológica , Cobre/química , Humanos , Nanopartículas Metálicas/química , Porosidade , Suspensões
20.
Front Genet ; 12: 662080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178029

RESUMO

The objectives of the present study were to identify key genes and biological pathways associated with thermal stress in Chinese Holstein dairy cattle. Hence, we constructed a cell-model, applied various molecular biology experimental techniques and bioinformatics analysis. A total of 55 candidate genes were screened from published literature and the IPA database to examine its regulation under cold (25°C) or heat (42°C) stress in PBMCs. We identified 29 (3 up-regulated and 26 down-regulated) and 41 (15 up-regulated and 26 down-regulated) significantly differentially expressed genes (DEGs) (fold change ≥ 1.2-fold and P < 0.05) after cold and heat stress treatments, respectively. Furthermore, bioinformatics analyses confirmed that major biological processes and pathways associated with thermal stress include protein folding and refolding, protein phosphorylation, transcription factor binding, immune effector process, negative regulation of cell proliferation, autophagy, apoptosis, protein processing in endoplasmic reticulum, estrogen signaling pathway, pathways related to cancer, PI3K- Akt signaling pathway, and MAPK signaling pathway. Based on validation at the cellular and individual levels, the mRNA expression of the HIF1A gene showed upregulation during cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 genes showed downregulation after heat exposure. The RT-qPCR and western blot results revealed that the HIF1A after cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 after heat stress had consistent trend changes at the cellular transcription and translation levels, suggesting as key genes associated with thermal stress response in Holstein dairy cattle. The cellular model established in this study with PBMCs provides a suitable platform to improve our understanding of thermal stress in dairy cattle. Moreover, this study provides an opportunity to develop simultaneously both high-yielding and thermotolerant Chinese Holstein cattle through marker-assisted selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...