Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(3): 1354-1359, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900361

RESUMO

Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes.

2.
Environ Sci Technol ; 54(3): 1730-1739, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940195

RESUMO

We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Cloro , Gases , Humanos , Ácido Hipocloroso , Ventilação
3.
Environ Sci Process Impacts ; 22(1): 25-48, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712796

RESUMO

Through air inhalation, dust ingestion and dermal exposure, the indoor environment plays an important role in controlling human chemical exposure. Indoor emissions and chemistry can also have direct impacts on the quality of outdoor air. And so, it is important to have a strong fundamental knowledge of the chemical processes that occur in indoor environments. This review article summarizes our understanding of the indoor chemistry field. Using a molecular perspective, it addresses primarily the new advances that have occurred in the past decade or so and upon developments in our understanding of multiphase partitioning and reactions. A primary goal of the article is to contrast indoor chemistry to that which occurs outdoors, which we know to be a strongly gas-phase, oxidant-driven system in which substantial oxidative aging of gases and aerosol particles occurs. By contrast, indoor environments are dark, gas-phase oxidant concentrations are relatively low, and due to air exchange, only short times are available for reactive processing of gaseous and particle constituents. However, important gas-surface partitioning and reactive multiphase chemistry occur in the large surface reservoirs that prevail in all indoor environments. These interactions not only play a crucial role in controlling the composition of indoor surfaces but also the surrounding gases and aerosol particles, thus affecting human chemical exposure. There are rich research opportunities available if the advanced measurement and modeling tools of the outdoor atmospheric chemistry community continue to be brought indoors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Aerossóis , Poluentes Atmosféricos/química , Poeira , Gases , Humanos
4.
Environ Sci Technol ; 53(21): 12467-12475, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31600435

RESUMO

Ozone is an important oxidant in the environment. To study the nature of multiphase ozonolysis, an unsaturated triglyceride, triolein, of the type present in skin oil, biological membranes, and most cooking oils was oxidized by gas-phase ozone on a surface. A high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) method was developed for analyzing triolein and its oxidized products. Upon exposure to ozone, the decay of thin coatings of triolein was observed, accompanied by the formation of functionalized condensed-phase products including secondary ozonides (SOZ), acids, and aldehydes. By studying the reaction kinetics as a function of average coating thickness and ozone mixing ratio, we determined that the reactive uptake coefficient (γ) is on the order of 10-6 to 10-5. It is also concluded that the reaction occurs in the bulk without a major interfacial component, and the reacto-diffusive depth of ozone in the triolein coating is estimated to be between 8 and 40 nm. The specific nature of the reaction products is affected by the reactions of the Criegee intermediate formed during ozonolysis. In particular, although an increase in the relative humidity to 50% from dry conditions has no effect on the kinetics of triolein decay, the yield of SOZs is significantly depressed, indicating reactions of the Criegee intermediates to form hydroperoxides. Once formed, the SOZ products are thermally stable over periods of at least 48 h at room temperature but decomposition was observed under simulated outdoor sunlight, likely forming organic acids. From an environmental perspective, this chemistry indicates that SOZs and other oxygenates will form via ozonolysis of oily indoor surfaces and skin oil.


Assuntos
Ozônio , Cinética , Espectrometria de Massas , Oxirredução , Triglicerídeos
5.
Environ Sci Technol ; 53(20): 11792-11800, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31576741

RESUMO

Application of chlorine bleach solution (major component sodium hypochlorite, NaOCl) in indoor environments leads to the emission of gaseous hypochlorous acid (HOCl) and chlorine (Cl2), both of which are strong oxidants. In contrast to the outdoor atmosphere, where mixing ratios of HOCl and Cl2 tend to be low (10s-100s of ppt), indoor HOCl and Cl2 can reach high levels during cleaning activities (100s of ppb or higher). HOCl and Cl2 may react with unsaturated organic compounds on indoor surfaces and in indoor air. In this study, we studied the reaction of limonene, one of the most common indoor volatile organic compounds (VOCs) arising from use of cleaning products, fragrance, and air fresheners, with HOCl and Cl2 in an environmental chamber. A dark reaction was observed between limonene and HOCl/Cl2 leading to gas-phase reaction products that were investigated using proton transfer reaction mass spectrometry (PTR-MS). With subsequent exposure to indoor fluorescent lights or diffuse sunlight through a nearby window, a substantial mass loading of secondary particles were formed with an averaged mass yield of 40% relative to the amount of limonene consumed. Aerosol mass spectrometry (AMS) measurements indicate a large contribution of particulate chlorine species. Electrospray ionization mass spectrometry (ESI-MS) analysis of filter-collected particles indicates the formation of high molecular weight products. This is the first study of the oxidation of limonene with HOCl and Cl2, and it illustrates the potential for particle formation to occur with indoor lighting during the use of common cleaning products.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Ácido Hipocloroso , Iluminação , Terpenos
6.
Environ Sci Technol ; 53(18): 10695-10704, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31418552

RESUMO

Sulfur oxides (SOx) are important atmospheric trace species in both gas and particulate phases, and sulfate is a major component of atmospheric aerosol. One potentially important source of particulate sulfate formation is the oxidation of dissolved SO2 by organic peroxides, which comprises a major fraction of secondary organic aerosol (SOA). In this study, we investigated the reaction kinetics and mechanisms between SO2 and condensed-phase peroxides. pH-dependent aqueous phase reaction rate constants between S(IV) and organic peroxide standards were measured. Highly oxygenated organic peroxides with O/C > 0.6 in α-pinene SOA react rapidly with S(IV) species in the aqueous phase. The reactions between organic peroxides and S(IV) yield both inorganic sulfate and organosulfates (OS), as observed by electrospray ionization ion mobility mass spectrometry. For the first time, 34S-labeling experiments in this study revealed that dissolved SO2 forms OS via direct reactions without forming inorganic sulfate as a reactive intermediate. Kinetics of OS formation was estimated semiquantitatively, and such reaction was found to account for 30-60% of sulfur reacted. The photochemical box model GAMMA was applied to assess the implications of the measured SO2 consumption and OS formation rates. Our findings indicate that this novel pathway of SO2-peroxide reaction is important for sulfate formation in submicron aerosol.


Assuntos
Poluentes Atmosféricos , Dióxido de Enxofre , Aerossóis , Oxirredução , Peróxidos , Sulfatos
7.
Proc Natl Acad Sci U S A ; 116(24): 11658-11663, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142653

RESUMO

Benzo[a]pyrene (BaP), a key polycyclic aromatic hydrocarbon (PAH) often associated with soot particles coated by organic compounds, is a known carcinogen and mutagen. When mixed with organics, the kinetics and mechanisms of chemical transformations of BaP by ozone in indoor and outdoor environments are still not fully elucidated. Using direct analysis in real-time mass spectrometry (DART-MS), kinetics studies of the ozonolysis of BaP in thin films exhibited fast initial loss of BaP followed by a slower decay at long exposure times. Kinetic multilayer modeling demonstrates that the slow decay of BaP over long times can be simulated if there is slow diffusion of BaP from the film interior to the surface, resolving long-standing unresolved observations of incomplete PAH decay upon prolonged ozone exposure. Phase separation drives the slow diffusion time scales in multicomponent systems. Specifically, thermodynamic modeling predicts that BaP phase separates from secondary organic aerosol material so that the BaP-rich layer at the surface shields the inner BaP from ozone. Also, BaP is miscible with organic oils such as squalane, linoleic acid, and cooking oil, but its oxidation products are virtually immiscible, resulting in the formation of a viscous surface crust that hinders diffusion of BaP from the film interior to the surface. These findings imply that phase separation and slow diffusion significantly prolong the chemical lifetime of PAHs, affecting long-range transport of PAHs in the atmosphere and their fates in indoor environments.

8.
Environ Sci Process Impacts ; 21(8): 1334-1341, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30976776

RESUMO

The sources and sinks of isocyanic acid (HNCO), a toxic gas, in indoor environments are largely uncharacterized. In particular, cigarette smoke has been identified as a significant source. In this study, controlled smoking of tobacco cigarettes was investigated in both an environmental chamber and a residence in Toronto, Canada using an acetate-CIMS. The HNCO emission ratio from side-stream cigarette smoke was determined to be 2.7 (±1.1) × 10-3 ppb HNCO/ppb CO. Side-stream smoke from a single cigarette introduced a large pulse of HNCO to the indoor environment, increasing the HNCO mixing ratio by up to a factor of ten from background conditions of 0.15 ppb. Although there was no evidence for photochemical production of HNCO from cigarette smoke in the residence, it was observed in the environmental chamber via oxidation by the hydroxyl radical (1.1 × 107 molecules per cm3), approximately doubling the HNCO mixing ratio after 30 minutes of oxidation. Oxidation of cigarette smoke by O3 (15 ppb = 4.0 × 1017 molecules per cm3) and photo-reaction with indoor fluorescent lights did not produce HNCO. By studying the temporal profiles of both HNCO and CO after smoking, it is inferred that gas-to-surface partitioning of HNCO acts as an indoor loss pathway. Even in the absence of smoking, the indoor HNCO mixing ratios in the Toronto residence were elevated compared to concurrent outdoor measurements by approximately a factor of two.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Cianatos/análise , Habitação/normas , Fumar , Poluição por Fumaça de Tabaco/análise , Tabaco/química , Canadá , Humanos , Radical Hidroxila/análise , Oxirredução
9.
J Phys Chem A ; 123(10): 2114-2124, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30821460

RESUMO

Oxidative aging alters the composition of organic aerosols over time, in turn affecting the ability of aerosols to seed cloud formation and scatter solar radiation. Here we explore the heterogeneous photooxidation of model organic particles with and without a soluble surfactant coating. Tricarballylic acid (TCA), a proxy for α-pinene oxidation products, serves as a representative small organic solute. Sodium dodecyl sulfate (SDS) was selected as the representative soluble surfactant because its surface properties have been extensively characterized. A flow reactor and aerosol mass spectrometer were used to determine the second-order reaction rate constant ( k = (1.9 ± 0.1) × 10-11 cm3 molecule-1 s-1) and reactive uptake coefficient (γ = 3.0) for the heterogeneous photooxidation of uncoated TCA particles by gas-phase OH radicals; such a high uptake coefficient implicates radical chain reactions in the oxidation mechanism. SDS dramatically slows the disappearance of TCA: when the SDS concentration approaches monolayer coverage, the rate of reaction of TCA with OH decreases by ∼60% relative to the rate in the absence of SDS. These results indicate that small concentrations of surface-active molecules on atmospheric particles can protect organic solutes in the bulk from oxidative aging. This effect extends the environmental lifetime of dissolved pollutants.

10.
Environ Sci Technol ; 53(3): 1217-1224, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30387352

RESUMO

Washing with chlorine bleach leads to high mixing ratios of gas-phase HOCl. Using two methods that are sensitive to surface film composition-attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy and direct analysis in real time mass spectrometry (DART-MS)-we present the first study of the chlorination chemistry that occurs when gaseous HOCl reacts with thin films of squalene and oleic acid. At mixing ratios of 600 ppbv, HOCl forms chlorohydrins by adding across carbon-carbon double bonds without breaking the carbon backbone. The initial uptake of one HOCl molecule occurs on the time scale of a few minutes at these mixing ratios. For oleic acid, ester formation proceeds immediately thereafter, leading to dimeric and trimeric chlorinated products. For squalene, subsequent HOCl uptake occurs until all six of its carbon-carbon double bonds become chlorinated within 1-2 h. These results indicate that chlorination of skin oil, which contains substantial carbon unsaturation, is likely to occur rapidly under common cleaning conditions, potentially leading to the irritation associated with chlorinated bleach. This chemistry will likely also proceed with cooking oils, in the human respiratory system which has unsaturated surfactants as important components of lung fluid, and with organic components of the sea surface microlayer.


Assuntos
Cloridrinas , Ácido Oleico , Halogenação , Humanos , Ácido Hipocloroso , Esqualeno
11.
Environ Sci Technol ; 52(22): 13195-13201, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347142

RESUMO

Third-hand smoke (THS) is an emerging route of exposure to tobacco smoke in the indoor environment. Few studies have investigated the chemical behavior of THS, although initial findings suggest that semivolatile components of THS can partition to indoor aerosol. By exposing single-component particles to THS in an environmental chamber, this study demonstrates a pronounced dependence of THS uptake on aerosol composition. First, it was found that primarily reduced nitrogen compounds (that produced C xH yN z+ ion signal) in THS partitioned strongly to acidic ammoniated sulfate particles, whereas overall THS uptake to more pH-neutral sodium sulfate particles was minimal. Second, THS uptake to pure hydrocarbon particles (squalane) was even greater than to ammoniated sulfate particles with the uptake arising from mainly C xH y compounds. The greater uptake of THS to squalane was mostly driven by the dominant fraction of C xH y compounds in the side stream cigarette smoke aerosol, the composition of which is likely to be broadly similar to THS in these experiments. Third, oxygenated organic particles (sucrose) and solid ammonium sulfate particles showed minimal uptake. These results indicate that particulate THS inhalation exposure will be strongly dependent on the chemical nature of the particles present in the indoor environment.


Assuntos
Poluição por Fumaça de Tabaco , Aerossóis , Exposição por Inalação , Fumaça , Tabaco
12.
Environ Sci Technol ; 52(21): 12419-12427, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346749

RESUMO

Nitrous acid (HONO) is an important component of indoor air as a photolabile precursor to hydroxyl radicals and has direct health effects. HONO concentrations are typically higher indoors than outdoors, although indoor concentrations have proved challenging to predict using box models. In this study, time-resolved measurements of HONO and NO2 in a residence showed that [HONO] varied relatively weakly over contiguous periods of hours, while [NO2] fluctuated in association with changes in outdoor [NO2]. Perturbation experiments were performed in which indoor HONO was depleted or elevated and were interpreted using a two-compartment box model. To reproduce the measurements, [HONO] had to be predicted using persistent source and sink processes that do not directly involve NO2, suggesting that HONO was in equilibrium with indoor surfaces. Production of gas phase HONO directly from conversion of NO2 on surfaces had a weak influence on indoor [HONO] during the time of the perturbations. Highly similar temporal responses of HONO and semivolatile carboxylic acids to ventilation of the residence along with the detection of nitrite on indoor surfaces support the concept that indoor HONO mixing ratios are controlled strongly by gas-surface equilibrium.


Assuntos
Poluição do Ar em Ambientes Fechados , Ácido Nitroso , Habitação , Nitritos , Ventilação
13.
Environ Sci Technol ; 52(8): 4623-4631, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29601184

RESUMO

Cigarette smoke is an important source of particles and gases in the indoor environment. In this work, aging of side-stream cigarette smoke was studied in an environmental chamber via exposure to ozone (O3), hydroxyl radicals (OH) and indoor fluorescent lights. Aerosol mass concentrations increased by 13-18% upon exposure to 15 ppb O3 and by 8-42% upon exposure to 0.45 ppt OH. Ultrafine particle (UFP) formation was observed during all ozone experiments, regardless of the primary smoke aerosol concentration (185-1950 µg m-3). During OH oxidation, however, UFP formed only when the primary particle concentration was relatively low (<130 µg m-3) and the OH concentration was high (∼1.1 × 107 molecules cm-3). Online aerosol composition measurements show that oxygen- and nitrogen- containing species were formed during oxidation. Gas phase oxidation of NO to NO2 occurred during fluorescent light exposure, but neither primary particle growth nor UFP formation were observed. Overall, exposure of cigarette smoke to ozone will likely lead to UFP formation in indoor environments. On the other hand, UPF formation via OH oxidation will only occur when OH concentrations are high (∼107 molecules cm-3), and is therefore less likely to have an impact on indoor aerosol associated with cigarette smoke.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Tamanho da Partícula , Fumaça , Fumar
14.
15.
Environ Sci Process Impacts ; 19(10): 1292-1299, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28848957

RESUMO

The formation of two classes of epoxide products from the heterogeneous reaction of benzo[a]pyrene (BaP) with gas-phase ozone was demonstrated. BaP was coated on a Pyrex glass tube and oxidized with different concentrations of ozone. After oxidation, the epoxide products were derivatized by N-acetylcystein (NAC) and then analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that in addition to mono-epoxides, diol-epoxides were also formed. BaP exposed to genuine indoor air also produces mono- and diol-epoxides, having similar chromatograms to those produced by oxidation of BaP by low concentrations of ozone. Although it is well recognized that diol-epoxides are formed from BaP oxidation in the human body and that they exhibit carcinogenicity via formation of adducts with DNA, this is the first demonstration that such classes of compounds can be formed by abiotic heterogeneous oxidation.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Benzo(a)pireno/química , Compostos de Epóxi/análise , Modelos Teóricos , Ozônio/química , Animais , Cromatografia Líquida de Alta Pressão , Adutos de DNA/análise , Humanos , Estrutura Molecular , Oxirredução , Espectrometria de Massas em Tandem
16.
Proc Natl Acad Sci U S A ; 114(24): 6203-6208, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559340

RESUMO

Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

17.
Environ Sci Technol ; 51(5): 2519-2528, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169528

RESUMO

Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.


Assuntos
Mudança Climática , Ozônio/química , Poluição do Ar , Atmosfera/química , Ecossistema , Humanos
18.
Environ Sci Technol ; 51(3): 1405-1413, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28124902

RESUMO

A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 µg m-3 ALW) or effloresced (∼0.2 µg m-3 ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.


Assuntos
Compostos Orgânicos Voláteis , Água , Aerossóis , Poluentes Atmosféricos , Sulfato de Amônio , Monoterpenos , Oxirredução
19.
Environ Sci Technol ; 50(21): 11723-11734, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690404

RESUMO

Research on the fate of reduced organic nitrogen compounds in the atmosphere has gained momentum since the identification of their crucial role in particle nucleation and the scale up of carbon capture and storage technology which employs amine-based solvents. Reduced organic nitrogen compounds have strikingly different lifetimes against OH radicals, from hours for amines to days for amides to years for isocyanates, highlighting unique functional group reactivity. In this work, we use ab initio methods to investigate the gas-phase mechanisms governing the reactions of amines, amides, isocyanates and carbamates with OH radicals. We determine that N-H abstraction is only a viable mechanistic pathway for amines and we identify a reactive pathway in amides, the formyl C-H abstraction, not currently considered in structure-activity relationship (SAR) models. We then use our acquired mechanistic knowledge and tabulated literature experimental rate coefficients to calculate SAR factors for reduced organic nitrogen compounds. These proposed SAR factors are an improvement over existing SAR models because they predict the experimental rate coefficients of amines, amides, isocyanates, isothiocyanates, carbamates and thiocarbamates with OH radicals within a factor of 2, but more importantly because they are based on a sound fundamental mechanistic understanding of their reactivity.


Assuntos
Amidas , Atmosfera , Aminas , Compostos de Nitrogênio , Relação Estrutura-Atividade
20.
Environ Sci Technol ; 50(21): 11688-11697, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27668450

RESUMO

Motivated by the importance of the heterogeneous chemistry of squalene contained within skin oil to indoor air chemistry, the surface reaction of squalene with gas-phase ozone has been investigated. Using direct analysis in real time mass spectrometry (DART-MS) to monitor squalene, the reactive uptake coefficients were determined to be (4.3 ± 2.2) × 10-4 and (4.0 ± 2.2) × 10-4 for ozone mixing ratios (MRO3) of 50 and 25 ppb, respectively, on squalene films deposited on glass surfaces. At an MRO3 of 25 ppb, the lifetime for oxidation was the same as that in an indoor office with an MRO3 between 22 and 32 ppb, suggesting that O3 was the dominant oxidant in this indoor setting. While the heterogeneous kinetics of squalene and O3 were independent of relative humidity (RH), the RH significantly affected the reaction products. Under dry conditions (<5% RH), in addition to several products between m/z 300 and 350, the major condensed-phase end products were levulinic acid (LLA) and succinic acid (SCA). Under humid conditions (50% RH), the major end products were 4-oxopentanal, 4-oxobutanoic acid, and LLA. The molar yields of LLA and SCA were quantified as 230 ± 43% and 110 ± 31%, respectively, under dry conditions and 91 ± 15% and <5%, respectively, at 50% RH. Moreover, high-molecular weight (molecular weight of >450 Da) products were observed under dry conditions with indications that LLA was involved in their formation. The mechanism of squalene oxidation is discussed in light of these observations, with indications of an important role played by Criegee intermediates.


Assuntos
Ozônio/química , Esqualeno/química , Poluição do Ar em Ambientes Fechados , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA