Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38560897

RESUMO

The strength of stem cell therapy is the regeneration of tissues by synergistic pleiotropic effects. Among many stem cell types, mesenchymal stem cells (MSCs) that are comprised of heterogenous population are widely used for clinical applications with the expectation of pleiotropic bystander effects. Muse cells are pluripotent-like/macrophage-like stem cells distributed in the bone marrow, peripheral blood, and organ connective tissues as cells positive for the pluripotent surface marker stage-specific-embryonic antigen -3. Muse cells comprise ~1% to several percent of MSCs. While Muse cells and MSCs share several characteristics, such as mesenchymal surface marker expression and their bystander effects, Muse cells exhibit unique characteristics not observed in MSCs. These unique characteristics of Muse cells include selective homing to damaged tissue after intravenous injection rather than being trapped in the lung like MSCs, replacement of a wide range of damaged/apoptotic cells by differentiation through phagocytosis, and long-lasting immunotolerance for donor cell use. In this review, we focus on the basic properties of Muse cells clarified through preclinical studies and clinical trials conducted by intravenous injection of donor-Muse cells without HLA-matching tests or immunosuppressant treatment. MSCs are considered to differentiate into osteogenic, chondrogenic, and adipogenic cells, whereas the range of their differentiation has long been debated. Muse cells may provide clues to the wide-ranging differentiation potential of MSCs that are observed with low frequency. Furthermore, the utilization of Muse cells may provide a novel strategy for clinical treatment.

2.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474192

RESUMO

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Feminino , Gravidez , Esclerose Amiotrófica Lateral/tratamento farmacológico , Antioxidantes/uso terapêutico , Antipirina , Edaravone/farmacologia , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Placenta
3.
J Immunol ; 212(7): 1244-1253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334457

RESUMO

A variety of commercial platforms are available for the simultaneous detection of multiple cytokines and associated proteins, often employing Ab pairs to capture and detect target proteins. In this study, we comprehensively evaluated the performance of three distinct platforms: the fluorescent bead-based Luminex assay, the proximity extension-based Olink assay, and a novel proximity ligation assay platform known as Alamar NULISAseq. These assessments were conducted on human serum samples from the National Institutes of Health IMPACC study, with a focus on three essential performance metrics: detectability, correlation, and differential expression. Our results reveal several key findings. First, the Alamar platform demonstrated the highest overall detectability, followed by Olink and then Luminex. Second, the correlation of protein measurements between the Alamar and Olink platforms tended to be stronger than the correlation of either of these platforms with Luminex. Third, we observed that detectability differences across the platforms often translated to differences in differential expression findings, although high detectability did not guarantee the ability to identify meaningful biological differences. Our study provides valuable insights into the comparative performance of these assays, enhancing our understanding of their strengths and limitations when assessing complex biological samples, as exemplified by the sera from this COVID-19 cohort.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Imunoensaio/métodos , Citocinas/metabolismo , Soro/metabolismo
4.
Mater Horiz ; 11(6): 1495-1501, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226904

RESUMO

The control of droplet motion is a significant challenge, as there has been no simple method for effective manipulation. Utilizing light for the control of droplets offers a promising solution due to its non-contact nature and high degree of controllability. In this study, we present our findings on the translational motion of pre-photomelted droplets composed of azobenzene derivatives on a glass surface when exposed to UV and visible light sources from different directions. These droplets exhibited directional and continuous motion upon light irradiation and this motion was size-dependent. Only droplets with diameters less than 10 µm moved with a maximum velocity of 300 µm min-1. In addition, the direction of the movement was controllable by the direction of the light. The motion is driven by a change in contact angle, where UV or visible light switched the contact angle to approximately 50° or 35°, respectively. In addition, these droplets were also found to be capable carriers for fluorescent quantum dots. As such, droplets composed of photoresponsive molecules offer unique opportunities for designing novel light-driven open-surface microfluidic systems.

5.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961126

RESUMO

A variety of commercial platforms are available for the simultaneous detection of multiple cytokines and associated proteins, often employing antibody pairs to capture and detect target proteins. In this study, we comprehensively evaluated the performance of three distinct platforms: the fluorescent bead-based Luminex assay, the proximity extension-based Olink assay, and a novel proximity ligation assay platform known as Alamar NULISAseq. These assessments were conducted on serum samples from the NIH IMPACC study, with a focus on three essential performance metrics: detectability, correlation, and differential expression. Our results reveal several key findings. Firstly, the Alamar platform demonstrated the highest overall detectability, followed by Olink and then Luminex. Secondly, the correlation of protein measurements between the Alamar and Olink platforms tended to be stronger than the correlation of either of these platforms with Luminex. Thirdly, we observed that detectability differences across the platforms often translated to differences in differential expression findings, although high detectability did not guarantee the ability to identify meaningful biological differences. Our study provides valuable insights into the comparative performance of these assays, enhancing our understanding of their strengths and limitations when assessing complex biological samples, as exemplified by the sera from this COVID-19 cohort.

6.
J Neuroimmune Pharmacol ; 18(4): 640-656, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37924374

RESUMO

Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1ß, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.


Assuntos
Fármacos Neuroprotetores , Pré-Eclâmpsia , Humanos , Ratos , Criança , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Pré-Eclâmpsia/metabolismo , Edaravone/farmacologia , Edaravone/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Encéfalo/metabolismo , Isquemia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
7.
Cell Transplant ; 32: 9636897231214370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014622

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of motor neurons. Multilineage-differentiating stress-enduring (Muse) cells are unique endogenous stem cells that show therapeutic effects on motor function in ALS mouse models. We conducted a single-center open phase II clinical trial to evaluate the safety and clinical effects of repeated intravenous injections of an allogenic Muse cell-based product, CL2020, in patients with ALS. Five patients with ALS received CL2020 intravenously once a month for a total of six doses. The primary endpoints were safety and tolerability, and the secondary endpoint was the rate of change in the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) score. In addition, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), sphingosine-1-phosphate (S1P), cerebrospinal fluid chitotriosidase-1 (CHIT-1), and neurofilament light chain (NfL) levels were evaluated. The CL2020 treatment was highly tolerated without serious side effects. The ALSFRS-R score change trended upward at 12 months post-CL2020 treatment compared with that at 3 months pre-administration, but the difference was not statistically significant. Among five patients diagnosed with ALS, three exhibited a decrease in the rate of ALSFRS-R score change, one demonstrated an increase, and another showed no change. In addition, the patients' serum IL-6 and TNF-α levels and cerebrospinal fluid CHIT-1 and NfL levels increased for up to 6 months post-treatment; however, their serum S1P levels continuously decreased over 12 months. These findings indicate a favorable safety profile of CL2020 therapy. In the near future, a double-blind study of a larger number of ALS patients should be conducted to confirm the efficacy of ALS treatment with CL2020.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Camundongos , Humanos , Esclerose Amiotrófica Lateral/tratamento farmacológico , Alprostadil/uso terapêutico , Interleucina-6 , Fator de Necrose Tumoral alfa , Neurônios Motores
8.
Brain Res ; 1821: 148565, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683777

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by the loss of synapses and neurons in the brain, and the accumulation of amyloid plaques. Aß oligomers (AßO) play a critical role in the pathogenesis of AD. Although there is increasing evidence to support the involvement of necroptosis in the pathogenesis of AD, the exact mechanism remains elusive. In the present study, we explored the effect of exogenous AßO injection on cell necroptosis and cognitive deficits in APP23 transgenic mice. We found that intrahippocampal injection of AßO accelerated the development of AD pathology and caused cognitive impairment in APP23 mice. Specifically, AßO injection significantly accelerated the accumulation of AßO and increased the expression level of phosphorylated-tau, and also induced necroptosis. Behavioral tests showed that AßO injection was associated with cognitive impairment. Furthermore, necroptosis induced by AßO injection occurred predominantly in microglia of the AD brain. We speculate that AßO increased necroptosis by activating microglia, resulting in cognitive deficits. Our results may aid in an understanding of the role played by AßO in AD from an alternative perspective and provide new ideas and evidence for necroptosis as a potential intervention and therapeutic target for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Necroptose , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/induzido quimicamente , Cognição
9.
Cell Transplant ; 32: 9636897231193069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615293

RESUMO

Human cord blood-endothelial progenitor cells (hCB-EPCs) isolated from the human umbilical cord can be used to repair damaged arteries. In this study, we used an animal model with pathological changes that mimics artery wall damage caused by stent retrievers in humans. We injected hCB-EPCs to investigate their effect on endothelial hyperplasia and dysfunction during intimal repair. Four groups were established based on the length of reperfusion (3 and 28 days), as well as the presence or absence of hCB-EPC therapy. Damage to the internal carotid artery was evaluated by hematoxylin-eosin and immunohistochemical staining. Stroke volume was not significantly different between non-EPC and EPC groups although EPC treatment alleviated intimal hyperplasia 28 days after intimal damage. Vascular endothelial growth factor (VEGF) and eNOS expression were significantly higher in the EPC-treated group than in the non-EPC group 3 days after intimal damage. In addition, MMP9 and 4HNE expression in the EPC-treated group was significantly lower than in the non-EPC group. Ultimately, this study found that venous transplantation of hCB-EPCs could inhibit neointimal hyperplasia, alleviate endothelial dysfunction, suppress intimal inflammation, and reduce oxidative stress during healing of intimal damage.


Assuntos
Células Progenitoras Endoteliais , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Hiperplasia/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sangue Fetal , Artérias , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo
10.
J Neurol Neurosurg Psychiatry ; 94(10): 816-824, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142397

RESUMO

BACKGROUND: Several genetic factors are associated with the pathogenesis of sporadic amyotrophic lateral sclerosis (ALS) and its phenotypes, such as disease progression. Here, in this study, we aimed to identify the genes that affect the survival of patients with sporadic ALS. METHODS: We enrolled 1076 Japanese patients with sporadic ALS with imputed genotype data of 7 908 526 variants. We used Cox proportional hazards regression analysis with an additive model adjusted for sex, age at onset and the first two principal components calculated from genotyped data to conduct a genome-wide association study. We further analysed messenger RNA (mRNA) and phenotype expression in motor neurons derived from induced pluripotent stem cells (iPSC-MNs) of patients with ALS. RESULTS: Three novel loci were significantly associated with the survival of patients with sporadic ALS-FGF1 at 5q31.3 (rs11738209, HR=2.36 (95% CI, 1.77 to 3.15), p=4.85×10-9), THSD7A at 7p21.3 (rs2354952, 1.38 (95% CI, 1.24 to 1.55), p=1.61×10-8) and LRP1 at 12q13.3 (rs60565245, 2.18 (95% CI, 1.66 to 2.86), p=2.35×10-8). FGF1 and THSD7A variants were associated with decreased mRNA expression of each gene in iPSC-MNs and reduced in vitro survival of iPSC-MNs obtained from patients with ALS. The iPSC-MN in vitro survival was reduced when the expression of FGF1 and THSD7A was partially disrupted. The rs60565245 was not associated with LRP1 mRNA expression. CONCLUSIONS: We identified three loci associated with the survival of patients with sporadic ALS, decreased mRNA expression of FGF1 and THSD7A and the viability of iPSC-MNs from patients. The iPSC-MN model reflects the association between patient prognosis and genotype and can contribute to target screening and validation for therapeutic intervention.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Amiotrófica Lateral/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estudo de Associação Genômica Ampla , População do Leste Asiático , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Neurônios Motores/patologia
11.
J Med Invest ; 70(1.2): 150-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164712

RESUMO

OBJECTIVE: First bite syndrome is a complication of surgical resection of parapharyngeal space tumors and the development of cramping pain in the parotid region with the first bite of a meal. The present study aimed to identify the potential risk factors for the development of first bite syndrome. METHODS: We retrospectively reviewed 30 consecutive patients with parapharyngeal space tumors who had been surgically treated between August 2003 and December 2015 at our department. RESULTS: The tumor site (prestyloid or retrostyloid) and surgical approach (transcervical-parotid, transparotid, or transcervical) were not correlated with the development of first bite syndrome. Ligation and mobilization of the external carotid artery was significantly correlated with the development of first bite syndrome. Moreover, patients with complete resection of the parotid gland did not experience first bite syndrome. DISCUSSION: The present findings suggest that concomitant surgical settings of 1) sympathetic denervation of the parotid gland with ligation of the external carotid artery or injury of the sympathetic nerve plexus around the external carotid artery during its mobilization, and 2) residual parotid gland tissue are risk factors for the development of first bite syndrome after surgical resection of parapharyngeal space tumors. J. Med. Invest. 70 : 150-153, February, 2023.


Assuntos
Neoplasias , Espaço Parafaríngeo , Humanos , Estudos Retrospectivos , Dor/etiologia , Síndrome , Fatores de Risco
12.
EClinicalMedicine ; 59: 101920, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37256098

RESUMO

Background: Functionally impaired variants of COQ2, encoding an enzyme in biosynthesis of coenzyme Q10 (CoQ10), were found in familial multiple system atrophy (MSA) and V393A in COQ2 is associated with sporadic MSA. Furthermore, reduced levels of CoQ10 have been demonstrated in MSA patients. Methods: This study was a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. Patients with MSA were randomly assigned (1:1) to either ubiquinol (1500 mg/day) or placebo. The primary efficacy outcome was the change in the unified multiple system atrophy rating scale (UMSARS) part 2 at 48 weeks. Efficacy was assessed in all patients who completed at least one efficacy assessment (full analysis set). Safety analyses included patients who completed at least one dose of investigational drug. This trial is registered with UMIN-CTR (UMIN000031771), where the drug name of MSA-01 was used to designate ubiquinol. Findings: Between June 26, 2018, and May 27, 2019, 139 patients were enrolled and randomly assigned to the ubiquinol group (n = 69) or the placebo group (n = 70). A total of 131 patients were included in the full analysis set (63 in the ubiquinol group; 68 in the placebo group). This study met the primary efficacy outcome (least square mean difference in UMSARS part 2 score (-1.7 [95% CI, -3.2 to -0.2]; P = 0.023)). The ubiquinol group also showed better secondary efficacy outcomes (Barthel index, Scale for the Assessment and Rating of Ataxia, and time required to walk 10 m). Rates of adverse events potentially related to the investigational drug were comparable between ubiquinol (n = 15 [23.8%]) and placebo (n = 21 [30.9%]). Interpretation: High-dose ubiquinol was well-tolerated and led to a significantly smaller decline of UMSARS part 2 score compared with placebo. Funding: Japan Agency for Medical Research and Development.

13.
Cureus ; 15(3): e36104, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37065285

RESUMO

Myoclonus, a rare complication in patients with end-stage renal disease, is typically ameliorated through hemodialysis. The present case concerns an 84-year-old male with chronic renal failure undergoing hemodialysis, presenting involuntary movements in his limbs, which gradually worsened from the initiation of hemodialysis without constant elevation of serum blood urea nitrogen and electrolytes levels. Surface electromyography revealed characteristic findings consistent with myoclonus. He was diagnosed with subcortical-nonsegmental myoclonus related to hemodialysis, and the myoclonus was significantly alleviated after slightly increasing the post-dialysis target weight even though drug treatment was ineffective. This case suggests that drug-resistant myoclonus in patients with renal failure may be improved by adjusting hemodialysis settings, even in cases of atypical dialysis disequilibrium syndrome.

14.
J Neurol Sci ; 447: 120608, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906993

RESUMO

Carnosine (ß-alanyl-L-histidine) is a natural dipeptide with multiple neuroprotective properties. Previous studies have advertised that carnosine scavenges free radicals and displays anti-inflammatory activity. However, the underlying mechanism and the efficacies of its pleiotropic effect on prevention remained obscure. In this study, we aimed to investigate the anti-oxidative, anti-inflammative, and anti-pyroptotic effects of carnosine in the transient middle cerebral artery occlusion (tMCAO) mouse model. After a daily pre-treatment of saline or carnosine (1000 mg / kg / day) for 14 days, mice (n = 24) were subjected to tMCAO for 60 min and continuously treated with saline or carnosine for additional 1 and 5 days after reperfusion. The administration of carnosine significantly decreased infarct volume 5 days after the tMCAO (*p < 0.05) and effectively suppressed the expression of 4-HNE, 8-OHdG, Nitrotyrosine 5 days, and RAGE 5 days after tMCAO. Moreover, the expression of IL-1ß was also significantly suppressed 5 days after tMCAO. Our present findings demonstrated that carnosine effectively relieves oxidative stress caused by ischemic stroke and significantly attenuates neuroinflammatory responses related to IL-1ß, suggesting that carnosine can be a promising therapeutic strategy for ischemic stroke.


Assuntos
Carnosina , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Animais , Carnosina/farmacologia , Carnosina/uso terapêutico , Carnosina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Estresse Oxidativo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico
15.
Cardiol Cardiovasc Med ; 7(1): 32-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969491

RESUMO

Ischemic stroke (IS) is a common neurological disease in the elderly, but the relationship between neutrophil/albumin ratio (NAR) and leukocyte count/albumin ratio (LAR) and the severity of neurological function injury and early neurological deterioration (END) occurrence remain elusive in acute IS. A total of 299 patients with acute IS and 56 healthy controls were enrolled. According to the NIHSS score at admission, the disease group was divided into three groups (mild, moderate and severe IS), and the differences in five indexes NAR, LAR, neutrophil count, leukocyte count and albumin among the four groups were analyzed. Furthermore, explore the correlation between the above indicators and the severity of IS and END occurrence. The results showed that higher NAR, LAR, neutrophil count, leukocyte count levels and lower albumin levels were associated with acute IS, and the levels of NAR and LAR increased gradually in three groups of IS. NAR and LAR were positively and albumin was negatively correlated with the severity of IS. Meanwhile, NAR and LAR showed a good predictive value in identifying patients with END after acute IS. NAR and LAR may be predictors of the severity of IS and END occurrence after acute IS.

16.
Intern Med ; 62(3): 365-371, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36418105

RESUMO

Objective During the coronavirus disease 2019 (COVID-19) pandemic, many social activities have moved online using applications for digital devices (e.g. computers, smartphones). We investigated the needs of telemedicine and trends in medical status and social care situations of Japanese patients with neurological disorders in order to estimate their affinity for an online telemedicine application. Methods We designed an original questionnaire for the present study that asked participants what problems they had with hospital visits, how the COVID-19 pandemic had affected their lives, and whether or not they would like to receive telemedicine. Patients The present study included volunteer caregivers, participants with Parkinson's disease (PD), epilepsy, stroke, dementia, immune-mediated neurological disease (IMMD), spinocerebellar degeneration (SCD), amyotrophic lateral sclerosis (ALS), headache, myopathy, and other neurological diseases from Okayama University Hospital. Results A total of 29.6% of patients wanted to use telemedicine. Patients with headaches (60.0%) and epilepsy (38.1%) were more likely to want to use telemedicine than patients with PD (17.8%) or stroke (19.0%). Almost 90% of patients had access to a digital device, and there was no association between favoring telemedicine, ownership of a digital device, hospital visiting time, or waiting time at the hospital, although age was associated with motivation to telemedicine use (52.6 vs. 62.2 years old, p<0.001). Conclusion We can contribute to the management of the COVID-19 pandemic and the medical economy by promoting telemedicine, especially for young patients with headaches or epilepsy.


Assuntos
COVID-19 , Epilepsia , Doença de Parkinson , Acidente Vascular Cerebral , Telemedicina , Humanos , Pessoa de Meia-Idade , COVID-19/epidemiologia , Pandemias , População do Leste Asiático , Telemedicina/métodos , Doença de Parkinson/epidemiologia , Doença de Parkinson/terapia , Epilepsia/epidemiologia , Epilepsia/terapia , Cefaleia/epidemiologia , Cefaleia/terapia , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/terapia
17.
J Alzheimers Dis ; 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36565115

RESUMO

BACKGROUND: NADPH oxidase 2 (NOX2) is an important source of reactive oxygen species (ROS). Activated NOX2 may contribute to Alzheimer's disease (AD). Our previous studies showed that a novel vitamin E mixture, Tocovid, had potential neuroprotective effects in a stroke mice model and an AD cell model. OBJECTIVE: The aim of this study was two-fold: to assess whether long-term Tocovid treatment can regulate NOX2, and the therapeutic effects of long-term administration of Tocovid to an AD mice model. METHODS: Therapeutic effects of long-term administration of Tocovid (200 mg/kg /day) on an Aß-overexpressed transgenic AD mice model (APP23, n = 8) was investigated. The therapeutic effect of Tocovid in 16-month-old mice compared with the no-treatment APP23 group (n = 9) was assessed. RESULTS: Tocovid treatment strongly improved motor and memory deficits of APP23 mice by attenuating NOX2 expression, oxidative stress, neuroinflammation, neurovascular unit dysfunction, synaptic alteration, and Aß deposition after 16 months. CONCLUSION: These findings suggest that NOX2 is a potential target in AD pathology. Long-term administration of Tocovid may be a promising candidate for AD treatment.

18.
J Neuropathol Exp Neurol ; 82(1): 38-48, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36331509

RESUMO

GPI anchorless prion diseases (GPIALPs) show numerous coarse prion protein (PrP) deposits in the CNS but neuropil spongiform changes are mild and the incidence of dementia is low. Here, we examined differences in resident microglial phenotypes between GPIALP (D178fs25) and the other prion diseases Gerstmann-Sträussler-Scheinker (GSS) disease and sporadic Creutzfeldt-Jakob disease (sCJD) with respect to homeostasis and activation. Immunohistochemistry was performed on 2 GPIALP (D178fs25), 4 GSS (P102L), and 4 sCJD cases. Homeostatic microglia expressing TMEM119 and P2RY12 were preserved in GPIALP compared to GSS and sCJD. Microglia/macrophage activation in GSS and sCJD was associated with the extent of spongiform change. Immunoelectron microscopy revealed TMEM119 and P2RY12 in PrP plaque cores. Activated microglia/macrophages expressing HLA-DR and CD68 were predominant in GSS and sCJD whereas in GPIALP, homeostatic microglia were retained and activated microglia/macrophages were rarely observed. These data suggest that PrP deposition in GPIALP is less toxic and that microglia may be immune-tolerant to PrP deposition. This may be associated with milder tissue damage and a low incidence of dementia. Whereas microglia/macrophage activation is considered to be a reaction to tissue injury, this study shows that the degree of microglia/macrophage activity might influence the extent of tissue damage.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Proteínas de Membrana , Microglia , Receptores Purinérgicos P2Y12 , Humanos , Síndrome de Creutzfeldt-Jakob/metabolismo , Doença de Gerstmann-Straussler-Scheinker/genética , Microglia/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
19.
J Neurol Sci ; 441: 120356, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963200

RESUMO

Alzheimer's disease (AD) is a degenerative disorder characterized by the loss of synapses and neurons in the brain, and results in the accumulation of amyloid-based neurotic plaques. Amyloid-ß oligomers (AßO) are widely accepted as the main neurotoxin that induces oxidative stress and neuronal loss in AD. In this study, an oxidative stress model of the neuroblastoma SH-SY5Y cell line exposed to AßO was established to simulate an AD cell model. Exposure to AßO significantly reduced the viability of cultured SH-SY5Y cells (p < 0.05) and significantly increased intracellular reactive oxygen species (ROS) (p < 0.01). AßO exposure also induced oxidative stress in SH-SY5Y cells. Furthermore, AßO significantly increased the level of hyperphosphorylation of tau at sites T181 and T205 in SH-SY5Y cells (p < 0.01). Using edaravone, a free radical scavenger with neuroprotective properties, as the control, the possible protective and anti-oxidative effects of curcumin (40 µM) and resveratrol (20 µM) were evaluated. The results suggest that curcumin and resveratrol decreased ROS generation, attenuated oxidative stress, inhibited tau hyperphosphorylation, and protected SH-SY5Y cells from AßO damage. Both curcumin and resveratrol are promising supplements or medicine as therapeutic agents for the treatment of AD.


Assuntos
Doença de Alzheimer , Curcumina , Neuroblastoma , Fármacos Neuroprotetores , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Linhagem Celular Tumoral , Curcumina/farmacologia , Edaravone , Sequestradores de Radicais Livres/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Neurotoxinas , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia
20.
Methods Mol Biol ; 2525: 289-294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836077

RESUMO

Oxidative and hypoxic stresses are associated with the degeneration of both motor neurons and skeletal muscles in amyotrophic lateral sclerosis (ALS). In vivo bioluminescent imaging is used to monitor cellular responses to oxidative and hypoxic stresses in living ALS model mice bearing G93A-human Cu/Zn superoxide dismutase (SOD1) longitudinally using the IVIS spectrum imaging system. Double transgenic mice bearing both Keap1-dependent oxidative stress detector No-48 (OKD48) and G93A-SOD1 are useful for in vivo imaging of oxidative stress in ALS. We developed a bioluminescence resonance energy transfer (BRET) probe that is regulated by HIF-1α-specific ubiquitin-proteasome system. G93A-SOD1 mice injected with the BRET probe are useful to investigate the spatiotemporal responses to hypoxic stress in ALS. In this chapter, we introduce a practical protocol of in vivo imaging of both oxidative and hypoxic stress in ALS model mice.


Assuntos
Esclerose Amiotrófica Lateral , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Humanos , Hipóxia , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...