Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemCatChem ; 12(8): 2226-2232, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32421028

RESUMO

The substitution of catalytic metals by p-block main elements has a tremendous impact not only in the fundamentals but also in the economic and ecological fingerprint of organic reactions. Here we show that few-layer black phosphorous (FL-BP), a recently discovered and now readily available 2D material, catalyzes different radical additions to alkenes with an initial turnover frequency (TOF0) up to two orders of magnitude higher than representative state-of-the-art metal complex catalysts at room temperature. The corresponding electron-rich BP intercalation compound (BPIC) KP6 shows a nearly twice TOF0 increase with respect to FL-BP. This increase in catalytic activity respect to the neutral counterpart also occurs in other 2D materials (graphene vs. KC8) and metal complex catalysts (Fe0 vs. Fe2- carbon monoxide complexes). This reactive parallelism opens the door for cross-fertilization between 2D materials and metal catalysts in organic synthesis.

2.
Phys Rev Lett ; 124(12): 126101, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281827

RESUMO

Two-dimensional (2D) antimony, so-called antimonene, can form antimonene oxide when exposed to air. We present different types of single- and few-layer antimony oxide structures, based on density functional theory (DFT) calculations. Depending on stoichiometry and bonding type, these novel 2D layers have different structural stability and electronic properties, ranging from topological insulators to semiconductors with direct and indirect band gaps between 2.0 and 4.9 eV. We discuss their vibrational properties and Raman spectra for experimental identification of the predicted structures.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32314852

RESUMO

The synthesis of a drug delivery platform based on graphene was achieved through a step-by-step strategy of selective amine deprotection and functionalization. The multifunctional graphene platform, functionalized with indocyanine green, folic acid, and doxorubicin showed an enhanced anticancer activity. The remarkable targeting capacity for cancer cells in combination with the synergistic effect of drug release and photothermal properties prove the great advantage of a combined chemo- and phototherapy based on graphene against cancer, opening the doors to future therapeutic applications of this type of material.

4.
Chemistry ; 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32053228

RESUMO

Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, electron microscopy, thermogravimetric analysis coupled with mass spectrometry and 29 Si solid-state nuclear magnetic resonance, among others. The effect on the electronic properties of the functionalized LDH was investigated by a magnetic study in combination with Mössbauer spectroscopy. Moreover, the reversibility of the silane-functionalization at basic pH was demonstrated, and the quality of the resulting LDH was proven by studying the electrochemical performance in the oxygen evolution reaction in basic media. Furthermore, the anion exchange capability for the NiFe-APTES was tested employing CrVI , resulting in an increase of 200 % of the anion retention. This report allows for a new degree of tunability of LDHs, opening the door to the synthesis of new hybrid architectures and materials.

6.
Chemistry ; 25(57): 13218-13223, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298440

RESUMO

Graphene has been covalently functionalized through a one-pot reductive pathway using graphite intercalation compounds (GICs), in particular KC8 , with three different orthogonally protected derivatives of 4-aminobenzylamine. This novel multifunctional platform exhibits excellent bulk functionalization homogeneity (Hbulk ) and degree of addition while preserving the chemical functionalities of the organic addends through different protecting groups, namely: tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz) and phthalimide (Pht). We have employed (temperature-dependent) statistical Raman spectroscopy (SRS), X-ray photoelectron spectroscopy (XPS), magic angle spinning solid state 13 C NMR (MAS-NMR), and a characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TG-GC-MS) to unambiguously demonstrate the covalent binding and the chemical nature of the different molecular linkers. This work paves the way for the development of smart graphene-based materials of great interest in biomedicine or electronics, to name a few, and will serve as a guide in the design of new 2D multifunctional materials.

7.
Inorg Chem ; 58(14): 9414-9424, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276381

RESUMO

The present study introduces a comprehensive exploration in terms of physicochemical characterization and calculations based on density functional theory with Hubbard's correction (DFT+U) of the whole family of α-Co(II) hydroxyhalide (F, Cl, Br, I). These samples were synthesized at room temperature by employing a one-pot approach based on the epoxide route. A thorough characterization (powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis/mass spectroscopy, and magnetic and conductivity measurements) corroborated by simulation is presented that analyzes the structural, magnetic, and electronic aspects. Beyond the inherent tendency of intercalated anions to modify the interlayer distance, the halide's nature has a marked effect on several aspects. Such as the modulation of the CoOh to CoTd ratio, as well as the inherent tendency towards dehydration and irreversible decomposition. Whereas the magnetic behavior is strongly correlated with the CoTd amount reflected in the presence of glassy behavior with high magnetic disorder, the electrical properties depend mainly on the nature of the halide. The computed electronic structures suggest that the CoTd molar fraction exerts a minor effect on the inherent conductivity of the phases. However, the band gap of the solid turns out to be significantly dependent on the nature of the incorporated halide, governed by ligand to metal charge transfer, which minimizes the gap as the anionic radius becomes larger. Conductivity measurements of pressed pellets confirm this trend. To the best of our knowledge, this is the first report on the magnetic and electrical properties of α-Co(II) hydroxyhalides validated with in silico descriptions, opening the gate for the rational design of layered hydroxylated phases with tunable electrical, optical, and magnetic properties.

8.
Adv Mater ; 31(28): e1900189, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31081262

RESUMO

The rapid rise in energy demand in the past years has prompted a search for low-cost alternatives for energy storage, supercapacitors being one of the most important devices. It is shown that a dramatic enhancement (≈1100%, from 155 to 1850 F g-1 ) of the specific capacitance of a hybrid stimuli-responsive FeNi3 -graphene electrode material can be achieved when the charge/discharge cycling is performed in the presence of an applied magnetic field of 4000 G. This result is related to an unprecedented magnetic-field-induced metal segregation of the FeNi3 nanoparticles during the cycling, which results in the appearance of small Ni clusters (<5 nm) and, consequently, in an increase in pseudocapacitive sites. The results open the door to a systematic improvement of the capacitance values of hybrid supercapacitors, while moving the research in this area towards the development of magnetically addressable energy-storage devices.

9.
J Am Chem Soc ; 141(17): 7173-7180, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973716

RESUMO

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate)2, here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate)2 and Fe(2-methylbenzimidazolate)2. The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results from the chemisorption of NO molecules, which also causes a gate-opening behavior. Finally, the controlled pyrolysis of MUV-3 results in a N-doped graphitic nanocomposite that exhibits extraordinary performance for the oxygen evolution reaction (OER), with low overpotential at different current densities (316 mV at 10 mA cm-2), low Tafel slope (37 mV per decade), high maximum current density (710 mA cm-2 at 2.0 V vs RHE), and great durability (15 h).

10.
RSC Adv ; 9(7): 3570-3576, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30854196

RESUMO

We report a straightforward chemical methodology for controlling the thickness of black phosphorus flakes down to the monolayer limit by layer-by-layer oxidation and thinning, using water as solubilizing agent. Moreover, the oxidation process can be stopped at will by two different passivation procedures, namely the non-covalent functionalization with perylene diimide chromophores, which prevents the photooxidation, or by using a protective ionic liquid layer. The obtained flakes preserve their electronic properties as demonstrated by fabricating a BP field-effect transistor (FET). This work paves the way for the preparation of BP devices with controlled thickness.

11.
Chem Commun (Camb) ; 55(23): 3315-3318, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30756105

RESUMO

Direct exfoliation of a carbonate layered double hydroxide (LDH) has been achieved by using a novel horn-probe sonic tip, avoiding the development of time-consuming anion-exchange reactions. The most suitable solvents were chosen based on the Hildebrand solubility parameters and the thickness of the exfoliated nanosheets confirmed unambiguously the successful delamination.

12.
Nat Commun ; 10(1): 509, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705264

RESUMO

Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well-structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid-catalyzed alkylations, by enabling an alternative mechanism on surface, protected from the water and air by the ionic liquid. These 2D catalysts allow the alkylation of a variety of acid-sensitive organic molecules and giving synthetic relevancy to the use of simple esters as alkylating agents.

13.
Angew Chem Int Ed Engl ; 58(17): 5763-5768, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30675972

RESUMO

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

14.
J Am Chem Soc ; 140(9): 3352-3360, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29405064

RESUMO

Single-walled carbon nanotubes (SWCNT) have been covalently cross-linked via a reductive functionalization pathway, utilizing negatively charged carbon nanotubides (KC4). We have compared the use of difunctional linkers acting as molecular pillars between the nanotubes, namely, p-diiodobenzene, p-diiodobiphenyl, benzene-4,4'-bis(diazonium), and 1,1'-biphenyl-4,4'-bis(diazonium) salts as electrophiles. We have employed statistical Raman spectroscopy (SRS), a forefront characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TG-GC-MS) and aberration-corrected high-resolution transmission electron microscopy imaging series at 80 kV to unambiguously demonstrate the covalent binding of the molecular linkers. The present study shows that the SWCNT functionalization using iodide derivatives leads to the best results in terms of bulk functionalization homogeneity ( Hbulk) and degree of addition. Phenylene linkers yield the highest degree of functionalization, whereas biphenylene units induce a higher surface area with an increase in the thermal stability and an improved electrochemical performance in the oxygen reduction reaction (ORR). This work illustrates the importance of molecular engineering in the design of novel functional materials and provides important insights into the understanding of basic principles of reductive cross-linking of carbon nanotubes.

15.
Inorg Chem ; 57(4): 2013-2022, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29419288

RESUMO

Layered double hydroxides (LDHs) exhibit unparalleled anion exchange properties and the ability to be exfoliated into 2D nanosheets, which can be used as a building block to fabricate a wide variety of hybrid functional nanostructured materials. Still, if one wants to use LDHs as a magnetic building blocks in the design of complex architectures, the role played by the dipolar magnetic interactions in these layered materials needs to be understood. In this work, we synthesized and characterized a five-membered CoAl-LDH series with basal spacing ranging from 7.5 to 34 Å. A detailed experimental characterization allows us to conclude that the main factor governing the dipolar interactions between magnetic layers cannot be the interlayer spacing. Supporting theoretical modeling suggests instead a relevant role for spin correlation size, which, in the limit, is related to the lateral dimension of the layer. These results highlight the importance of cation ordering in the magnetic behavior of LDHs, and underpin the differences with homometallic-layered hydroxides.

16.
Chemistry ; 24(18): 4671-4679, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29334163

RESUMO

The synthesis and characterization of a new type of a highly conjugated heterocyclic π-chromophore, consisting of a central triphenylene core fused with three perylene monoimide units (star-shaped molecules), is described. By judicious bay functionalization with tert-butylphenoxy substituents, aggregation was completely prevented by using 1,1,2,2-tetrachloroethane, allowing for a straightforward purification and, for the very first time, the complete separation of the constitutional isomers by HPLC. Both isomers can be easily distinguished by means of several conventional spectroscopic techniques. Furthermore, we have illustrated the absence of supramolecular aggregates and enhanced processability by noncovalent functionalization of graphene substrates, showing an outstanding homogeneity and demonstrating a different doping behavior in both isomers, making it possible to distinguish them by Raman spectroscopy.

17.
Adv Mater ; 30(2)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076558

RESUMO

Antimonene, defined in sensu stricto as a single layer of antimony atoms, is recently the focus of numerous theoretical works predicting a variety of interesting properties and is quickly attracting the attention of the scientific community. However, what places antimonene in a different category from other 2D crystals is its strong spin-orbit coupling and a drastic evolution of its properties from the monolayer to the few-layer system. The recent isolation of this novel 2D material pushes the interest for antimonene even further. Here, a review of both theoretical predictions and experimental results is compiled. First, an account of the calculations anticipating an electronic band structure suitable for optoelectronics and thermoelectric applications in monolayer form and a topological semimetal in few-layer form is given. Second, the different approaches to produce antimonene-mechanical and liquid phase exfoliation, and epitaxial growth methods-are reviewed. In addition, this work also reports the main characterization techniques used to study this exotic material. This review provides insights for further exploring the appealing properties of antimonene and puts forward the opportunities and challenges for future applications from (opto)electronic device fabrication to biomedicine.

18.
Angew Chem Int Ed Engl ; 56(48): 15267-15273, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28980764

RESUMO

Black phosphorus intercalation compounds (BPICs) with alkali metals (namely: K and Na) have been synthesized in bulk by solid-state as well as vapor-phase reactions. By means of a combination of in situ X-ray diffraction, Raman spectroscopy, and DFT calculations the structural behavior of the BPICs at different intercalation stages has been demonstrated for the first time. Our results provide a glimpse into the very first steps of a new family of intercalation compounds, with a distinct behavior as compared to its graphite analogues (GICs), showing a remarkable structural complexity and a dynamic behavior.

19.
Angew Chem Int Ed Engl ; 56(46): 14389-14394, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28945952

RESUMO

Antimonene, a novel group 15 two-dimensional material, is functionalized with a tailormade perylene bisimide through strong van der Waals interactions. The functionalization process leads to a significant quenching of the perylene fluorescence, and surpasses that observed for either graphene or black phosphorus, thus allowing straightforward characterization of the flakes by scanning Raman microscopy. Furthermore, scanning photoelectron microscopy studies and theoretical calculations reveal a remarkable charge-transfer behavior, being twice that of black phosphorus. Moreover, the excellent stability under environmental conditions of pristine antimonene has been tackled, thus pointing towards the spontaneous formation of a sub-nanometric oxide passivation layer. DFT calculations revealed that the noncovalent functionalization of antimonene results in a charge-transfer band gap of 1.1 eV.

20.
J Am Chem Soc ; 139(30): 10432-10440, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28675300

RESUMO

Herein, we have developed a systematic study on the oxidation and passivation of mechanically exfoliated black phosphorus (BP). We analyzed the strong anisotropic behavior of BP by scanning Raman microscopy providing an accurate method for monitoring the oxidation of BP via statistical Raman spectroscopy. Furthermore, different factors influencing the environmental instability of the BP, i.e., thickness, lateral dimensions or visible light illumination, have been investigated in detail. Finally, we discovered that the degradation of few-layer BP flakes of <10 nm can be suppressed for months by using ionic liquids, paving the way for the development of BP-based technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA