Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem ; 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672855

RESUMO

BACKGROUND: Molecular profiling has become essential for tumor risk stratification and treatment selection. However, cancer genome complexity and technical artifacts make identification of real variants a challenge. Currently, clinical laboratories rely on manual screening, which is costly, subjective, and not scalable. We present a machine learning-based method to distinguish artifacts from bona fide single-nucleotide variants (SNVs) detected by next-generation sequencing from nonformalin-fixed paraffin-embedded tumor specimens. METHODS: A cohort of 11278 SNVs identified through clinical sequencing of tumor specimens was collected and divided into training, validation, and test sets. Each SNV was manually inspected and labeled as either real or artifact as part of clinical laboratory workflow. A 3-class (real, artifact, and uncertain) model was developed on the training set, fine-tuned with the validation set, and then evaluated on the test set. Prediction intervals reflecting the certainty of the classifications were derived during the process to label "uncertain" variants. RESULTS: The optimized classifier demonstrated 100% specificity and 97% sensitivity over 5587 SNVs of the test set. Overall, 1252 of 1341 true-positive variants were identified as real, 4143 of 4246 false-positive calls were deemed artifacts, whereas only 192 (3.4%) SNVs were labeled as "uncertain," with zero misclassification between the true positives and artifacts in the test set. CONCLUSIONS: We presented a computational classifier to identify variant artifacts detected from tumor sequencing. Overall, 96.6% of the SNVs received definitive labels and thus were exempt from manual review. This framework could improve quality and efficiency of the variant review process in clinical laboratories.

2.
Hum Genet ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701237

RESUMO

Whole exome sequencing (WES) is increasingly being used in the prenatal setting. The emerging data support the clinical utility of prenatal WES based on its diagnostic yield, which can be as high as 80% for certain ultrasound findings. However, detailed practice and laboratory guidelines, addressing the indications for prenatal WES and the surrounding technical, interpretation, ethical, and counseling issues, are still lacking. Herein, we review the literature and summarize the most recent findings and applications of prenatal WES. This review offers specialists and clinical genetic laboratorians a body of evidence and expert opinions that can serve as a resource to assist in their practice. Finally, we highlight the emerging technologies that promise a future of prenatal WES without the risks associated with invasive testing.

3.
Ann Clin Transl Neurol ; 6(8): 1445-1455, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31402610

RESUMO

OBJECTIVE: Pathogenic variants in SCN8A, encoding the voltage-gated sodium (Na+) channel α subunit Nav1.6, is a known cause of epilepsy. Here, we describe clinical and genetic features of all patients with SCN8A epilepsy evaluated at a single-tertiary care center, with biophysical data on identified Nav1.6 variants and pharmacological response to selected Na+ channel blockers. METHODS: SCN8A variants were identified via an exome-based panel of epilepsy-associated genes for next generation sequencing (NGS), or via exome sequencing. Biophysical characterization was performed using voltage-clamp recordings of ionic currents in heterologous cells. RESULTS: We observed a range in age of onset and severity of epilepsy and associated developmental delay/intellectual disability. Na+ channel blockers were highly or partially effective in most patients. Nav1.6 variants exhibited one or more biophysical defects largely consistent with gain of channel function. We found that clinical severity was correlated with the presence of multiple observed biophysical defects and the extent to which pathological Na+ channel activity could be normalized pharmacologically. For variants not previously reported, functional studies enhanced the evidence of pathogenicity. INTERPRETATION: We present a comprehensive single-center dataset for SCN8A epilepsy that includes clinical, genetic, electrophysiologic, and pharmacologic data. We confirm a spectrum of severity and a variety of biophysical defects of Nav1.6 variants consistent with gain of channel function. Na+ channel blockers in the treatment of SCN8A epilepsy may correlate with the effect of such agents on pathological Na+ current observed in heterologous systems.

4.
J Neurosci ; 39(36): 7132-7154, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31350259

RESUMO

Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo- ), SK channel (dSK- ), or both (dSK- ;; dSlo- ) is shaped in the female fruit fly (Drosophila melanogaster) R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information.SIGNIFICANCE STATEMENT In this study, we directly link in vivo and ex vivo experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how Drosophila photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.

5.
Am J Hum Genet ; 105(2): 403-412, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303265

RESUMO

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.

6.
Genome Res ; 29(7): 1144-1151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235655

RESUMO

Recent advances in DNA sequencing have expanded our understanding of the molecular basis of genetic disorders and increased the utilization of clinical genomic tests. Given the paucity of evidence to accurately classify each variant and the difficulty of experimentally evaluating its clinical significance, a large number of variants generated by clinical tests are reported as variants of unknown clinical significance. Population-scale variant databases can improve clinical interpretation. Specifically, pathogenicity prediction for novel missense variants can use features describing regional variant constraint. Constrained genomic regions are those that have an unusually low variant count in the general population. Computational methods have been introduced to capture these regions and incorporate them into pathogenicity classifiers, but these methods have yet to be compared on an independent clinical variant data set. Here, we introduce one variant data set derived from clinical sequencing panels and use it to compare the ability of different genomic constraint metrics to determine missense variant pathogenicity. This data set is compiled from 17,071 patients surveyed with clinical genomic sequencing for cardiomyopathy, epilepsy, or RASopathies. We further use this data set to demonstrate the necessity of disease-specific classifiers and to train PathoPredictor, a disease-specific ensemble classifier of pathogenicity based on regional constraint and variant-level features. PathoPredictor achieves an average precision >90% for variants from all 99 tested disease genes while approaching 100% accuracy for some genes. The accumulation of larger clinical variant training data sets can significantly enhance their performance in a disease- and gene-specific manner.

7.
Genet Med ; 21(11): 2442-2452, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31160754

RESUMO

PURPOSE: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.

8.
JAMA Netw Open ; 2(4): e192129, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977854

RESUMO

Importance: Although genetic testing is important for bringing precision medicine to children with epilepsy, it is unclear what genetic testing strategy is best in maximizing diagnostic yield. Objectives: To evaluate the diagnostic yield of an exome-based gene panel for childhood epilepsy and discuss the value of follow-up testing. Design, Setting, and Participants: A case series study was conducted on data from clinical genetic testing at Children's Hospital of Philadelphia was conducted from September 26, 2016, to January 8, 2018. Initial testing targeted 100 curated epilepsy genes for sequence and copy number analysis in 151 children with idiopathic epilepsy referred consecutively by neurologists. Additional genetic testing options were offered afterward. Exposures: Clinical genetic testing. Main Outcomes and Measures: Molecular diagnostic findings. Results: Of 151 patients (84 boys [55.6%]; median age, 4.2 years [interquartile range, 1.4-8.7 years]), 16 children (10.6%; 95% CI, 6%-16%) received a diagnosis after initial panel analysis. Parental testing for 15 probands with inconclusive results revealed de novo variants in 7 individuals (46.7%), resulting in an overall diagnostic yield of 15.3% (23 of 151; 95% CI, 9%-21%). Twelve probands with nondiagnostic panel findings were reflexed to exome sequencing, and 4 were diagnostic (33.3%; 95% CI, 6%-61%), raising the overall diagnostic yield to 17.9% (27 of 151; 95% CI, 12%-24%). The yield was highest (17 of 44 [38.6%; 95% CI, 24%-53%]) among probands with epilepsy onset in infancy (age, 1-12 months). Panel diagnostic findings involved 16 genes: SCN1A (n = 4), PRRT2 (n = 3), STXBP1 (n = 2), IQSEC2 (n = 2), ATP1A2, ATP1A3, CACNA1A, GABRA1, KCNQ2, KCNT1, SCN2A, SCN8A, DEPDC5, TPP1, PCDH19, and UBE3A (all n = 1). Exome sequencing analysis identified 4 genes: SMC1A, SETBP1, NR2F1, and TRIT1. For the remaining 124 patients, analysis of 13 additional genes implicated in epilepsy since the panel was launched in 2016 revealed promising findings in 6 patients. Conclusions and Relevance: Exome-based targeted panels appear to enable rapid analysis of a preselected set of genes while retaining flexibility in gene content. Successive genetic workup should include parental testing of select probands with inconclusive results and reflex to whole-exome trio analysis for the remaining nondiagnostic cases. Periodic reanalysis is needed to capture information in newly identified disease genes.

9.
Hum Mutat ; 40(3): 243-257, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582250

RESUMO

The PCDH19 gene consists of six exons encoding a 1,148 amino acid transmembrane protein, Protocadherin 19, which is involved in brain development. Heterozygous pathogenic variants in this gene are inherited in an unusual X-linked dominant pattern in which heterozygous females are affected, while hemizygous males are typically unaffected, although they pass on the pathogenic variant to each affected daughter. PCDH19-related disorder is known to cause early-onset epilepsy in females characterized by seizure clusters exacerbated by fever and in most cases, onset is within the first year of life. This condition was initially described in 1971 and in 2008 PCDH19 was identified as the underlying genetic etiology. This condition is the result of pathogenic loss-of-function variants that may be de novo or inherited from an affected mother or unaffected father and cellular interference has been hypothesized to be the culprit. Heterozygous females are symptomatic because of the presence of both wild-type and mutant cells that interfere with one another due to the production of different surface proteins, whereas nonmosaic hemizygous males produce a homogenous population of cells. Here, we review novel pathogenic variants in the PCDH19 gene since 2012 to date, and summarize any genotype-phenotype correlations.

10.
J Mol Diagn ; 21(1): 38-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30577886

RESUMO

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.

11.
Hum Mutat ; 39(11): 1593-1613, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30311386

RESUMO

Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.

12.
JAMA Pediatr ; 172(12): 1113-1114, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285033
13.
Hum Mutat ; 39(11): 1517-1524, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30192042

RESUMO

The 2015 ACMG/AMP sequence variant interpretation guideline provided a framework for classifying variants based on several benign and pathogenic evidence criteria, including a pathogenic criterion (PVS1) for predicted loss of function variants. However, the guideline did not elaborate on specific considerations for the different types of loss of function variants, nor did it provide decision-making pathways assimilating information about variant type, its location, or any additional evidence for the likelihood of a true null effect. Furthermore, this guideline did not take into account the relative strengths for each evidence type and the final outcome of their combinations with respect to PVS1 strength. Finally, criteria specifying the genes for which PVS1 can be applied are still missing. Here, as part of the ClinGen Sequence Variant Interpretation (SVI) Workgroup's goal of refining ACMG/AMP criteria, we provide recommendations for applying the PVS1 criterion using detailed guidance addressing the above-mentioned gaps. Evaluation of the refined criterion by seven disease-specific groups using heterogeneous types of loss of function variants (n = 56) showed 89% agreement with the new recommendation, while discrepancies in six variants (11%) were appropriately due to disease-specific refinements. Our recommendations will facilitate consistent and accurate interpretation of predicted loss of function variants.

14.
J Mol Diagn ; 20(6): 789-801, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30096381

RESUMO

Variant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high-frequency loss-of-function variants in the Genome Aggregation Database and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as clinically significant, insignificant, or of uncertain significance. Interestingly, 6% of all exons, containing 124 reportedly disease-causing variants, were of uncertain significance. Finally, we used exon-level next-generation sequencing quality metrics generated at two clinical laboratories and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues that might lead to false-variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.

15.
J Mol Diagn ; 20(5): 643-652, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936260

RESUMO

Exome-based panels are becoming the preferred diagnostic strategy in clinical laboratories. This approach enables dynamic gene content update and, if needed, cost-effective reflex to whole-exome sequencing. Currently, no guidelines or appropriate resources are available to support the clinical implementation of exome-based panels. Here, we highlight principles and important considerations for the clinical development and validation of exome-based panels. In addition, we developed ExomeSlicer, a novel, web-based resource, which uses empirical exon-level next-generation sequencing quality metrics to predict and visualize technically challenging exome-wide regions in any gene or genes of interest. Exome sequencing data from 100 clinical epilepsy cases were used to illustrate the clinical utility of ExomeSlicer in predicting poor-quality regions and its impact on streamlining the ad hoc Sanger sequencing fill in burden. With the use of ExomeSlicer, >2100 low complexity and/or high-homology regions affecting >1615 genes across the exome were also characterized. These regions can be a source of false-positive or false-negative variant calls, which can lead to misdiagnoses in tested patients and/or inaccurate functional annotations. We provide important considerations and a novel resource for the clinical development of exome-based panels.

16.
Genet Med ; 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595809

RESUMO

PurposeHereditary hearing loss is highly heterogeneous. To keep up with rapidly emerging disease-causing genes, we developed the AUDIOME test for nonsyndromic hearing loss (NSHL) using an exome sequencing (ES) platform and targeted analysis for the curated genes.MethodsA tiered strategy was implemented for this test. Tier 1 includes combined Sanger and targeted deletion analyses of the two most common NSHL genes and two mitochondrial genes. Nondiagnostic tier 1 cases are subjected to ES and array followed by targeted analysis of the remaining AUDIOME genes.ResultsES resulted in good coverage of the selected genes with 98.24% of targeted bases at >15 ×. A fill-in strategy was developed for the poorly covered regions, which generally fell within GC-rich or highly homologous regions. Prospective testing of 33 patients with NSHL revealed a diagnosis in 11 (33%) and a possible diagnosis in 8 cases (24.2%). Among those, 10 individuals had variants in tier 1 genes. The ES data in the remaining nondiagnostic cases are readily available for further analysis.ConclusionThe tiered and ES-based test provides an efficient and cost-effective diagnostic strategy for NSHL, with the potential to reflex to full exome to identify causal changes outside of the AUDIOME test.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2018.48.

17.
Clin Chem ; 64(4): 705-714, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29339441

RESUMO

BACKGROUND: Copy number variants (CNVs) can substantially contribute to the pathogenic variant spectrum in several disease genes. The detection of this type of variant is complicated in genes with high homology to other genomic sequences, yet such genomics regions are more likely to lead to CNVs, making it critical to address detection in these settings. METHODS: We developed a copy number analysis approach for high homology genes/regions that consisted of next-generation sequencing (NGS)-based dosage analysis accompanied by allele-specific droplet digital PCR (ddPCR) confirmatory testing. We applied this approach to copy number analysis in STRC, a gene with 98.9% homology to a nonfunctional pseudogene, pSTRC, and characterized its accuracy in detecting different copy number states by use of known samples. RESULTS: Using a cohort of 517 patients with hearing loss, we prospectively demonstrated the clinical utility of the approach, which contributed 30 of the 122 total positives (6%) to the diagnostic yield, increasing the overall yield from 17.6% to 23.6%. Positive STRC genotypes included homozygous (n = 15) or compound heterozygous (n = 8) deletions, or heterozygous deletions in trans with pathogenic sequence variants (n = 7). Finally, this approach limited ddPCR testing to cases with NGS copy number findings, thus markedly reducing the number of costly and laborious, albeit specific, ddPCR tests. CONCLUSIONS: NGS-based CNV detection followed by allele-specific ddPCR confirmatory testing is a reliable and affordable approach for copy number analysis in medically relevant genes with homology issues.

18.
Prenat Diagn ; 38(1): 26-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345240

RESUMO

Clinical diagnostic laboratories are producing next-generation sequencing-based test results that are becoming increasingly incorporated into patient care. Whole genome and exome sequencing on fetal material derived from amniocytes, chorionic villi, or products of conception is starting to be offered clinically in specialized centers, but it has not yet become routine practice. The technical, interpretation, and ethical challenges are greatest in the area of prenatal medicine because the fetus has a limited health history, and the physical examination is only indirectly available via prenatal sonography. Here, we provide an overview of these challenges and highlight the clinical utility, reporting, and counseling issues associated with prenatal DNA sequencing. Future considerations are also discussed. © 2017 John Wiley & Sons, Ltd.


Assuntos
Diagnóstico Pré-Natal , Sequenciamento Completo do Genoma , Técnicas de Laboratório Clínico , Feminino , Aconselhamento Genético , Humanos , Gravidez
19.
Genet Med ; 19(5): 496-504, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27657688

RESUMO

PURPOSE: Classification of novel variants is a major challenge facing the widespread adoption of comprehensive clinical genomic sequencing and the field of personalized medicine in general. This is largely because most novel variants do not have functional, genetic, or population data to support their clinical classification. METHODS: To improve variant interpretation, we leveraged the Exome Aggregation Consortium (ExAC) data set (N = ~60,000) as well as 7,000 clinically curated variants in 132 genes identified in more than 11,000 probands clinically tested for cardiomyopathies, rasopathies, hearing loss, or connective tissue disorders to perform a systematic evaluation of domain level disease associations. RESULTS: We statistically identify regions that are most sensitive to functional variation in the general population and also most commonly impacted in symptomatic individuals. Our data show that a significant number of exons and domains in genes strongly associated with disease can be defined as disease-sensitive or disease-tolerant, leading to potential reclassification of at least 26% (450 out of 1,742) of variants of uncertain clinical significance in the 132 genes. CONCLUSION: This approach leverages domain functional annotation and associated disease in each gene to prioritize candidate disease variants, increasing the sensitivity and specificity of novel variant assessment within these genes.Genet Med advance online publication 22 September 2016.


Assuntos
Predisposição Genética para Doença , Variação Genética , Análise de Sequência de DNA/métodos , Cardiomiopatias/genética , Doenças do Tecido Conjuntivo/genética , Bases de Dados Genéticas , Estudos de Associação Genética , Perda Auditiva/genética , Humanos
20.
Expert Rev Mol Diagn ; 16(9): 987-99, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27388938

RESUMO

INTRODUCTION: The last two decades have witnessed revolutionary changes in clinical diagnostics, fueled by the Human Genome Project and advances in high throughput, Next Generation Sequencing (NGS). We review the current state of sequencing-based pediatric diagnostics, associated challenges, and future prospects. AREAS COVERED: We present an overview of genetic disease in children, review the technical aspects of Next Generation Sequencing and the strategies to make molecular diagnoses for children with genetic disease. We discuss the challenges of genomic sequencing including incomplete current knowledge of variants, lack of data about certain genomic regions, mosaicism, and the presence of regions with high homology. Expert commentary: NGS has been a transformative technology and the gap between the research and clinical communities has never been so narrow. Therapeutic interventions are emerging based on genomic findings and the applications of NGS are progressing to prenatal genetics, epigenomics and transcriptomics.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Genômica/normas , Genômica/tendências , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Lactente , Recém-Nascido , Masculino , Mosaicismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA