Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065182

RESUMO

The self-assembly of leucoquinizarin molecules on Au(111) surfaces is shown to be characterized by the molecules mostly being in their keto-enolic tautomeric form, with evidence of their temporary switching to other tautomeric forms. This reveals a metastable chemistry of the assembled molecules, to be considered for their possible employment in the formation of more complex hetero-organic interfaces.

2.
J Colloid Interface Sci ; 566: 60-68, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31986309

RESUMO

We observed a 73% enhancement of the power conversion efficiency (PCE) of a photovoltaic cell based on a single wall carbon nanotube/Si hybrid junction after exposing the device to a limited amount (10 ppm) of NO2 diluted in dry air. On the basis of a computational modeling of the junction, this enhancement is discussed in terms of both carbon nanotube (CNT) p-doping, induced by the interaction with the oxidizing molecules, and work function changes across the junction. Unlike studies so far reported, where the PCE enhancement was correlated only qualitatively to CNT doping, our study (i) provides a novel and reversible path to tune and considerably enhance the cell efficiency by a few ppm gas exposure, and (ii) shows computational results that quantitatively relate the observed effects to the electrostatics of the cell through a systematic calculation of the work function. These effects have been cross-checked by exposing the cell to reducing molecules (i.e·NH3) that resulted to be detrimental to the cell efficiency, consistently with the theoretical ab-initio calculations.

3.
Nanoscale ; 11(39): 18191-18200, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31560011

RESUMO

Long linear carbon nanostructures based on sp-hybridization can be synthesized by exploiting on-surface synthesis of halogenated precursors evaporated on Au(111), thus opening a way to investigations by surface-science techniques. By means of an experimental approach combining scanning tunneling microscopy and spectroscopy (STM and STS) with ex situ Raman spectroscopy we investigate the structural, electronic and vibrational properties of polymeric sp-sp2 carbon atomic wires composed by sp-carbon chains connected through phenyl groups. Density-functional-theory (DFT) calculations of the structure and the electronic density of states allow us to simulate STM images and to compute Raman spectra. The comparison of experimental data with DFT simulations unveil the properties and the formation stages as a function of the annealing temperature. Atomic-scale structural information from STM complement the Raman sensitivity to the single molecular bond to open the way to detailed understanding of these novel carbon nanostructures.

5.
Sci Rep ; 8(1): 18054, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575772

RESUMO

We propose germanium-vacancy complexes (GeVn) as a viable ingredient to exploit single-atom quantum effects in silicon devices at room temperature. Our predictions, motivated by the high controllability of the location of the defect via accurate single-atom implantation techniques, are based on ab-initio Density Functional Theory calculations within a parameterfree screened-dependent hybrid functional scheme, suitable to provide reliable bandstructure energies and defect-state wavefunctions. The resulting defect-related excited states, at variance with those arising from conventional dopants such as phosphorous, turn out to be deep enough to ensure device operation up to room temperature and exhibit a far more localized wavefunction.

6.
Materials (Basel) ; 11(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558338

RESUMO

Carbon structures comprising sp 1 chains (e.g., polyynes or cumulenes) can be synthesized by exploiting on-surface chemistry and molecular self-assembly of organic precursors, opening to the use of the full experimental and theoretical surface-science toolbox for their characterization. In particular, polarized near-edge X-ray absorption fine structure (NEXAFS) can be used to determine molecular adsorption angles and is here also suggested as a probe to discriminate sp 1 /sp 2 character in the structures. We present an ab initio study of the polarized NEXAFS spectrum of model and real sp 1 /sp 2 materials. Calculations are performed within density functional theory with plane waves and pseudopotentials, and spectra are computed by core-excited C potentials. We evaluate the dichroism in the spectrum for ideal carbynes and highlight the main differences relative to typical sp 2 systems. We then consider a mixed polymer alternating sp 1 C 4 units with sp 2 biphenyl groups, recently synthesized on Au(111), as well as other linear structures and two-dimensional networks, pointing out a spectral line shape specifically due to the the presence of linear C chains. Our study suggests that the measurements of polarized NEXAFS spectra could be used to distinctly fingerprint the presence of sp 1 hybridization in surface-grown C structures.

7.
Materials (Basel) ; 11(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340431

RESUMO

We report the electronic, magnetic and transport properties of a prototypical antiferromagnetic (AFM) spintronic device. We chose Cr as the active layer because it is the only room-temperature AFM elemental metal. We sandwiched Cr between two non-magnetic metals (Pt or Au) with large spin-orbit coupling. We also inserted a buffer layer of insulating MgO to mimic the structure and finite resistivity of a real device. We found that, while spin-orbit has a negligible effect on the current flowing through the device, the MgO layer plays a crucial role. Its effect is to decouple the Cr magnetic moment from Pt (or Au) and to develop an overall spin magnetization. We have also calculated the spin-polarized ballistic conductance of the device within the Büttiker⁻Landauer framework, and we have found that for small applied bias our Pt/Cr/MgO/Pt device presents a spin polarization of the current amounting to ≃25%.

8.
Nanotechnology ; 29(48): 485201, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30192742

RESUMO

Graphene and h-BN are grown by chemical vapor deposition in ultra high vacuum conditions on the Pt(110) surface. Scanning tunneling microscopy measurements and low-energy electron diffraction data indicate that graphene forms a variety of differently oriented incommensurate domains although with a strong preference to align its [Formula: see text] direction with the [Formula: see text] direction of Pt. Meanwhile, h-BN exhibits a c(8 × 10) commensurate superstructure, which presents a high level of defectivity that implies local variation of the periodicity (i.e. mixed c(8 × 10) and c(8 × 12) patches) and the introduction of local defects. The combination of advanced photoemission spectroscopy data (angle-resolved photoemission spectroscopy from the valence band) and ab initio calculations indicates that both 2D materials interact weakly with the substrate: graphene exhibits neutral doping and is morphologically flat, even if it nucleates on the relatively highly corrugated rectangular (110) surface. In the case of h-BN, the interaction is slightly stronger and is characterized by a small electron transfer from surface Pt atoms to nitrogen atoms. The (110) termination of Pt is therefore a quite interesting surface for the growth of 2D materials because given its low symmetry, it may favor the growth of selectively oriented domains but does not affect their pristine electronic properties.

9.
J Phys Condens Matter ; 30(28): 283002, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29845971

RESUMO

Recent years have witnessed an ever growing interest in the interactions between hydrogen atoms and a graphene sheet. Largely motivated by the possibility of modulating the electric, optical and magnetic properties of graphene, a huge number of studies have appeared recently that added to and enlarged earlier investigations on graphite and other carbon materials. In this review we give a glimpse of the many facets of this adsorption process, as they emerged from these studies. The focus is on those issues that have been addressed in detail, under carefully controlled conditions, with an emphasis on the interplay between the adatom structures, their formation dynamics and the electric, magnetic and chemical properties of the carbon sheet.

10.
Nano Lett ; 17(12): 7440-7446, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29149565

RESUMO

Interfaces between organic semiconductors and ferromagnetic metals offer intriguing opportunities in the rapidly developing field of organic spintronics. Understanding and controlling the spin-polarized electronic states at the interface is the key toward a reliable exploitation of this kind of systems. Here we propose an approach consisting in the insertion of a two-dimensional magnetic oxide layer at the interface with the aim of both increasing the reproducibility of the interface preparation and offering a way for a further fine control over the electronic and magnetic properties. We have inserted a two-dimensional Cr4O5 layer at the C60/Fe(001) interface and have characterized the corresponding morphological, electronic, and magnetic properties. Scanning tunneling microscopy and electron diffraction show that the film grows well-ordered both in the monolayer and multilayer regimes. Electron spectroscopies confirm that hybridization of the electronic states occurs at the interface. Finally, magnetic dichroism in X-ray absorption shows an unprecedented spin-polarization of the hybridized fullerene states. The latter result is discussed also in light of an ab initio theoretical analysis.

11.
ACS Appl Mater Interfaces ; 9(19): 16627-16634, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28425281

RESUMO

Despite the astonishing values of the power conversion efficiency reached, in just less than a decade, by the carbon nanotube/silicon (CNT/Si) solar cells, many doubts remain on the underlying transport mechanisms across the CNT/Si heterojunction. Here, by combining transient optical spectroscopy in the femtosecond timescale, X-ray photoemission, and a systematic tracking of I-V curves across all phases of the interlayer SiOx growth at the interface, we grasp the mechanism that adequately preserves charge separation at the junction, hindering the photoexcited carrier recombination. Moreover, supported by ab initio calculations aimed to model the complex CNT-Si heterointerface, we show that oxygen-related states at the interface act as entrapping centers for the photoexcited electrons, thus preventing recombination with holes that can flow from Si to CNT across the SiOx layer.

12.
Adv Mater ; 28(11): 2183-8, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26780377

RESUMO

A Bi2Te3 single crystal is grown with the modified Bridgman technique. The crystal has a nominal composition with a Te content of 61 mol% resulting in the existence of two distinct regions, p- and n-doped, respectively; color-coded tunneling spectra are taken over 60 nm at the transition region.

13.
Phys Chem Chem Phys ; 17(28): 18413-25, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26106869

RESUMO

The structure and electronic properties of carbon atom chains Cn in contact with Ag electrodes are investigated in detail with first principles means. The ideal Ag(100) surface is used as a model for binding, and electron transport through the chains is studied as a function of their length, applied bias voltage, presence of capping atoms (Si, S) and adsorption site. It is found that the metal-molecule bond largely influences electronic coupling to the leads. Without capping atoms the quality of the electric contact improves when increasing the carbon atom coordination number to the metal (1, 2 and 4 for adsorption on a top, bridge and hollow position, respectively) and this finding translates almost unchanged in more realistic tip-like contacts which present one, two or four metal atoms at the contact. Current-voltage characteristics show Ohmic behaviour over a wide range of bias voltages and the resulting conductances change only weakly when increasing the wire length. The effect of a capping species is typically drastic, and either largely reduces (S) or largely increases (Si) the coupling of the wire to the electrodes. Comparison of our findings with recent experimental results highlights the limits of the adopted approach, which can be traced back to the known gap problem of density-functional-theory.

14.
Phys Chem Chem Phys ; 16(33): 17610-6, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25025888

RESUMO

The electronic and transport properties of graphene ribbons sandwiched between hydrogen dimer lines, of the kind recently realized by Nilsson et al., Carbon, 2012, 50, 2052, are investigated with the help of first principles methods. It is found that such lines of hydrogen atoms block conduction between neighboring channels and effectively allow the confinement of graphene charge carriers, thereby opening the possibility of imprinting nano-circuits in graphene by controlled hydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA