Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Mais filtros

Base de dados
Intervalo de ano de publicação
Proc Natl Acad Sci U S A ; 119(15): e2119429119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377791


Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau­Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.

Adv Sci (Weinh) ; 8(23): e2101402, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34719881


The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3 O4 and MnV2 O4 and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.

Artigo em Inglês | MEDLINE | ID: mdl-33072886


The spin- 1 2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We find that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu4(OH)6FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin order on the spin- 1 2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q = 0 magnetic order. Partially Zn-substituted barlowite (Cu3.44Zn0.56(OH)6FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu2+ impurities are above the percolation threshold for the interlayer lattice and they couple more strongly to the nearest kagome moment. This system is a unique playground displaying QSL, VBC, and spin order, furthering our understanding of these highly competitive quantum states.

J Am Chem Soc ; 141(25): 9928-9936, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31136169


We present the synthesis and magnetic characterization of a polycrystalline sample of the 6H-perovskite Ba3CeRu2O9, which consists of Ru dimers based on face-sharing RuO6 octahedra. Our low-temperature magnetic susceptibility, magnetization, and neutron powder diffraction results reveal a nonmagnetic singlet ground state for the dimers. Inelastic neutron scattering, infrared spectroscopy, and the magnetic susceptibility over a wide temperature range are best explained by a molecular orbital model with a zero-field splitting parameter D = 85 meV for the Stot = 1 electronic ground-state multiplet. This large value is likely due to strong mixing between this ground-state multiplet and low-lying excited multiplets, arising from a sizable spin molecular orbital coupling combined with an axial distortion of the Ru2O9 units. Although the positive sign for the splitting ensures that Ba3CeRu2O9 is not a single molecule magnet, our work suggests that the search for these interesting materials should be extended beyond Ba3CeRu2O9 to other molecular magnets based on metal-metal bonding.

Sci Rep ; 6: 32462, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27571715


The influence of spin-orbit coupling (SOC) on the physical properties of the 5d(2) system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calculations. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d(2) system of 0.60(2) µB -a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d(2) systems relative to their 5d(3) counterparts, providing an explanation of the high TN found in Sr2MgOsO6.

Phys Rev Lett ; 114(9): 097201, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793845


Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.