Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372143

RESUMO

The electron-transferring flavoprotein-menaquinone oxidoreductase ABCX (EtfABCX), also known as FixABCX for its role in nitrogen-fixing organisms, is a member of a family of electron-transferring flavoproteins that catalyze electron bifurcation. EtfABCX enables endergonic reduction of ferredoxin (E°' ∼-450 mV) using NADH (E°' -320 mV) as the electron donor by coupling this reaction to the exergonic reduction of menaquinone (E°' -80 mV). Here we report the 2.9 Å structure of EtfABCX, a membrane-associated flavin-based electron bifurcation (FBEB) complex, from a thermophilic bacterium. EtfABCX forms a superdimer with two membrane-associated EtfCs at the dimer interface that contain two bound menaquinones. The structure reveals that, in contrast to previous predictions, the low-potential electrons bifurcated from EtfAB are most likely directly transferred to ferredoxin, while high-potential electrons reduce the quinone via two [4Fe-4S] clusters in EtfX. Surprisingly, EtfX shares remarkable structural similarity with mammalian [4Fe-4S] cluster-containing ETF ubiquinone oxidoreductase (ETF-QO), suggesting an unexpected evolutionary link between bifurcating and nonbifurcating systems. Based on this structure and spectroscopic studies of a closely related EtfABCX, we propose a detailed mechanism of the catalytic cycle and the accompanying structural changes in this membrane-associated FBEB system.

2.
Nat Commun ; 11(1): 5953, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230146

RESUMO

Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.

4.
Front Microbiol ; 11: 587127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193240

RESUMO

A nitrate- and metal-contaminated site at the Oak Ridge Reservation (ORR) was previously shown to contain the metal molybdenum (Mo) at picomolar concentrations. This potentially limits microbial nitrate reduction, as Mo is required by the enzyme nitrate reductase, which catalyzes the first step of nitrate removal. Enrichment for anaerobic nitrate-reducing microbes from contaminated sediment at the ORR yielded Bacillus strain EB106-08-02-XG196. This bacterium grows in the presence of multiple metals (Cd, Ni, Cu, Co, Mn, and U) but also exhibits better growth compared to control strains, including Pseudomonas fluorescens N2E2 isolated from a pristine ORR environment under low molybdate concentrations (<1 nM). Molybdate is taken up by the molybdate binding protein, ModA, of the molybdate ATP-binding cassette transporter. ModA of XG196 is phylogenetically distinct from those of other characterized ModA proteins. The genes encoding ModA from XG196, P. fluorescens N2E2 and Escherichia coli K12 were expressed in E. coli and the recombinant proteins were purified. Isothermal titration calorimetry analysis showed that XG196 ModA has a higher affinity for molybdate than other ModA proteins with a molybdate binding constant (K D ) of 2.2 nM, about one order of magnitude lower than those of P. fluorescens N2E2 (27.0 nM) and E. coli K12 (25.0 nM). XG196 ModA also showed a fivefold higher affinity for molybdate than for tungstate (11 nM), whereas the ModA proteins from P. fluorescens N2E2 [K D (Mo) 27.0 nM, K D (W) 26.7 nM] and E. coli K12[(K D (Mo) 25.0 nM, K D (W) 23.8 nM] had similar affinities for the two oxyanions. We propose that high molybdate affinity coupled with resistance to multiple metals gives strain XG196 a competitive advantage in Mo-limited environments contaminated with high concentrations of metals and nitrate, as found at ORR.

5.
Microbiol Resour Announc ; 9(44)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122416

RESUMO

Bacillus sp. strain EB106-08-02-XG196 was isolated from a high-nitrate- and heavy metal-contaminated site at the Oak Ridge Reservation in Tennessee. We report the draft genome sequence of this strain to provide insights into the genomic basis for surviving in this unique environment.

6.
PLoS One ; 15(9): e0232437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986713

RESUMO

Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.


Assuntos
Bactérias , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Metais Pesados/análise , Microbiota , Microbiologia do Solo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biofilmes , Reatores Biológicos/microbiologia , Filogenia , RNA Ribossômico 16S/genética
7.
Biotechnol Bioeng ; 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770740

RESUMO

The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass. Caldicellulosiruptor bescii (Topt 78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase from Clostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates that C. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2 , without net production of its native fermentation products, acetate and lactate.

8.
J Ind Microbiol Biotechnol ; 47(8): 585-597, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32783103

RESUMO

Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.

9.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859593

RESUMO

Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


Assuntos
Proteínas Arqueais/genética , Arseniato Redutases/genética , Regulação da Expressão Gênica em Archaea , Pyrococcus furiosus/genética , Thermoproteaceae/genética , Proteínas Arqueais/metabolismo , Arseniato Redutases/metabolismo , Arsênico/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/metabolismo
10.
Methods Mol Biol ; 2096: 141-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720152

RESUMO

Understanding the performance of key metabolic enzymes is critical to metabolic engineering. It is important to know the kinetic parameters of both native enzymes and heterologously expressed enzymes that play key roles in pathway performance (Zeldes et al., Front Microbiol 6:1209, 2015; Keller et al., Metab Eng 27:101-106, 2015). This step cannot be overlooked as gene expression is not always a good indicator of the production of fully active enzymes, especially those requiring cofactor assembly and processing (Zeldes et al., Front Microbiol 6:1209, 2015; Chandrayan et al., J Biol Chem 287:3257-3264, 2012; Basen et al., MBio 3:e00053-e00012, 2012). Additionally, knowing kinetic parameters and having accurate and reproducible assays allows for the use of powerful computational and in vitro pathway optimization tools that can inform metabolic engineering efforts that in turn can lead to improvements in pathway performance (Keller et al., Metab Eng 27:101-106, 2015; Copeland et al., Metab Eng 14:270-280, 2012). To take full advantage of these tools, understanding the roles of both enzymes directly involved in a pathway of interest, together with those in related pathways that may syphon off key intermediates, is ideal (Keller et al., Metab Eng 27:101-106, 2015; Thorgersen et al., Metab Eng 22:83-88; Lin et al., Metab Engi 31:44-52, 2015).

11.
ACS Appl Mater Interfaces ; 12(31): 35614-35625, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32662974

RESUMO

This study reports how the length of capping ligands on a nanocrystal surface affects its interfacial electron transfer (ET) with surrounding molecular electron acceptors, and consequently, impact the H2 production of a biotic-abiotic hybrid artificial photosynthetic system. Specifically, we study how the H2 production efficiency of a hybrid system, combining CdS nanorods (NRs), [NiFe] hydrogenase, and redox mediators (propyl-bridged 2,2'-bipyridinium, PDQ2+), depends on the alkyl chain length of mercaptocarboxylate ligands on the NR surface. We observe a minor decrease of the quantum yield for H2 production from 54 ± 6 to 43 ± 2% when varying the number of methylene units in the ligands from 2 to 7. In contrast, an abrupt decrease of the yield was observed from 43 ± 2 to 4 ± 1% when further increasing n from 7 to 11. ET studies reveal that the intrinsic ET rates from the NRs to the electron acceptor PDQ2+ are all within 108-109 s-1 regardless of the length of the capping ligands. However, the number of adsorbed PDQ2+ molecules on NR surfaces decreases dramatically when n ≥ 10, with the saturating number changing from 45 ± 5 to 0.3 ± 0.1 for n = 2 and 11, respectively. These results are not consistent with the commonly perceived exponential dependence of ET rates on the ligand length. Instead, they can be explained by the change of the accessibility of NR surfaces to electron acceptors from a disordered "liquid" phase at n < 7 to a more ordered "crystalline" phases at n > ∼7. These results highlight that the order of capping ligands is an important design parameter for further constructing nanocrystal/molecular assemblies in broad nanocrystal-based applications.

12.
Chemosphere ; 255: 126951, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417512

RESUMO

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Assuntos
Sedimentos Geológicos/química , Urânio/química , Poluentes Radioativos da Água/química , Bactérias , Água Subterrânea/química , Nitratos/análise , Compostos Orgânicos , Sulfatos/análise , Urânio/análise , Poluentes Radioativos da Água/análise
13.
Extremophiles ; 24(4): 511-518, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415359

RESUMO

The key difference in the modified Embden-Meyerhof glycolytic pathway in hyperthermophilic Archaea, such as Pyrococcus furiosus, occurs at the conversion from glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) where the typical intermediate 1,3-bisphosphoglycerate (1,3-BPG) is not present. The absence of the ATP-yielding step catalyzed by phosphoglycerate kinase (PGK) alters energy yield, redox energetics, and kinetics of carbohydrate metabolism. Either of the two enzymes, ferredoxin-dependent glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) or NADP+-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), responsible for this "bypass" reaction, could be deleted individually without impacting viability, albeit with differences in native fermentation product profiles. Furthermore, P. furiosus was viable in the gluconeogenic direction (growth on pyruvate or peptides plus elemental sulfur) in a ΔgapnΔgapor strain. Ethanol was utilized as a proxy for potential heterologous products (e.g., isopropanol, butanol, fatty acids) that require reducing equivalents (e.g., NAD(P)H, reduced ferredoxin) generated from glycolysis. Insertion of a single gene encoding the thermostable NADPH-dependent primary alcohol dehydrogenase (adhA) (Tte_0696) from Caldanaerobacter subterraneus, resulted in a strain producing ethanol via the previously established aldehyde oxidoreductase (AOR) pathway. This strain demonstrated a high ratio of ethanol over acetate (> 8:1) at 80 °C and enabled ethanol production up to 85 °C, the highest temperature for bio-ethanol production reported to date.


Assuntos
Pyrococcus furiosus , Fermentação , Gliceraldeído 3-Fosfato , Glicólise , Engenharia Metabólica
14.
Biotechnol Biofuels ; 13: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180826

RESUMO

Background: Biological conversion of lignocellulosic biomass is significantly hindered by feedstock recalcitrance, which is typically assessed through an enzymatic digestion assay, often preceded by a thermal and/or chemical pretreatment. Here, we assay 17 lines of unpretreated transgenic black cottonwood (Populus trichocarpa) utilizing a lignocellulose-degrading, metabolically engineered bacterium, Caldicellulosiruptor bescii. The poplar lines were assessed by incubation with an engineered C. bescii strain that solubilized and converted the hexose and pentose carbohydrates to ethanol and acetate. The resulting fermentation titer and biomass solubilization were then utilized as a measure of biomass recalcitrance and compared to data previously reported on the transgenic poplar samples. Results: Of the 17 transgenic poplar lines examined with C. bescii, a wide variation in solubilization and fermentation titer was observed. While the wild type poplar control demonstrated relatively high recalcitrance with a total solubilization of only 20% and a fermentation titer of 7.3 mM, the transgenic lines resulted in solubilization ranging from 15 to 79% and fermentation titers from 6.8 to 29.6 mM. Additionally, a strong inverse correlation (R 2 = 0.8) between conversion efficiency and lignin content was observed with lower lignin samples more easily converted and solubilized by C. bescii. Conclusions: Feedstock recalcitrance can be significantly reduced with transgenic plants, but finding the correct modification may require a large sample set to identify the most advantageous genetic modifications for the feedstock. Utilizing C. bescii as a screening assay for recalcitrance, poplar lines with down-regulation of coumarate 3-hydroxylase 3 (C3H3) resulted in the highest degrees of solubilization and conversion by C. bescii. One such line, with a growth phenotype similar to the wild-type, generated more than three times the fermentation products of the wild-type poplar control, suggesting that excellent digestibility can be achieved without compromising fitness of the tree.

15.
Extremophiles ; 24(1): 1-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31359136

RESUMO

Terrestrial hot springs near neutral pH harbor extremely thermophilic bacteria from the genus Caldicellulosiruptor, which utilize the carbohydrates of lignocellulose for growth. These bacteria are technologically important because they produce novel, multi-domain glycoside hydrolases that are prolific at deconstructing microcrystalline cellulose and hemicelluloses found in plant biomass. Among other interesting features, Caldicellulosiruptor species have successfully adapted to bind specifically to lignocellulosic substrates via surface layer homology (SLH) domains associated with glycoside hydrolases and unique binding proteins (tapirins) present only in these bacteria. They also utilize a parallel pathway for conversion of glyceraldehyde-3-phosphate into 3-phosphoglycerate via a ferredoxin-dependent oxidoreductase that is conserved across the genus. Advances in the genetic tools for Caldicellulosiruptor bescii, including the development of a high-temperature kanamycin-resistance marker and xylose-inducible promoter, have opened the door for metabolic engineering applications and some progress along these lines has been reported. While several species of Caldicellulosiruptor can readily deconstruct lignocellulose, improvements in the amount of carbohydrate released and in the production of bio-based chemicals are required to successfully realize the biotechnological potential of these organisms.


Assuntos
Clostridiales , Biomassa , Biotecnologia , Glicosídeo Hidrolases , Fontes Termais
16.
Extremophiles ; 24(1): 53-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31278423

RESUMO

The genome of the archaeon Pyrobaculum aerophilum (Topt ~ 100 °C) contains an operon (PAE2859-2861) encoding a putative pyranopterin-containing oxidoreductase of unknown function and metal content. These genes (with one gene modified to encode a His-affinity tag) were inserted into the fermentative anaerobic archaeon, Pyrococcus furiosus (Topt ~ 100 °C). Dye-linked assays of cytoplasmic extracts from recombinant P. furiosus show that the P. aerophilum enzyme is a thiosulfate reductase (Tsr) and reduces thiosulfate but not polysulfide. The enzyme (Tsr-Mo) from molybdenum-grown cells contains Mo (Mo:W = 9:1) while the enzyme (Tsr-W) from tungsten-grown cells contains mainly W (Mo:W = 1:6). Purified Tsr-Mo has over ten times the activity (Vmax = 1580 vs. 141 µmol min-1 mg-1) and twice the affinity for thiosulfate (Km = ~ 100 vs. ~ 200 µM) than Tsr-W and is reduced at a lower potential (Epeak = - 255 vs - 402 mV). Tsr-Mo and Tsr-W proteins are heterodimers lacking the membrane anchor subunit (PAE2861). Recombinant P. furiosus expressing P. aerophilum Tsr could not use thiosulfate as a terminal electron acceptor. P. furiosus contains five pyranopterin-containing enzymes, all of which utilize W. P. aerophilum Tsr-Mo is the first example of an active Mo-containing enzyme produced in P. furiosus.


Assuntos
Pyrobaculum , Pyrococcus furiosus , Sulfurtransferases , Tungstênio
17.
Biochim Biophys Acta Bioenerg ; 1861(1): 148087, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669490

RESUMO

Electron bifurcating, [FeFe]-hydrogenases are recently described members of the hydrogenase family and catalyze a combination of exergonic and endergonic electron exchanges between three carriers (2 ferredoxinred- + NAD(P)H + 3 H+ = 2 ferredoxinox + NAD(P)+ + 2 H2). A thermodynamic analysis of the bifurcating, [FeFe]-hydrogenase reaction, using electron path-independent variables, quantified potential biological roles of the reaction without requiring enzyme details. The bifurcating [FeFe]-hydrogenase reaction, like all bifurcating reactions, can be written as a sum of two non-bifurcating reactions. Therefore, the thermodynamic properties of the bifurcating reaction can never exceed the properties of the individual, non-bifurcating, reactions. The bifurcating [FeFe]-hydrogenase reaction has three competitive properties: 1) enabling NAD(P)H-driven proton reduction at pH2 higher than the concurrent operation of the two, non-bifurcating reactions, 2) oxidation of NAD(P)H and ferredoxin simultaneously in a 1:1 ratio, both are produced during typical glucose fermentations, and 3) enhanced energy conservation (~10 kJ mol-1 H2) relative to concurrent operation of the two, non-bifurcating reactions. Our analysis demonstrated ferredoxin E°' largely determines the sensitivity of the bifurcating reaction to pH2, modulation of the reduced/oxidized electron carrier ratios contributed less to equilibria shifts. Hydrogenase thermodynamics data were integrated with typical and non-typical glycolysis pathways to evaluate achieving the 'Thauer limit' (4 H2 per glucose) as a function of temperature and pH2. For instance, the bifurcating [FeFe]-hydrogenase reaction permits the Thauer limit at 60 °C if pH 2 ≤ ~10 mbar. The results also predict Archaea, expressing a non-typical glycolysis pathway, would not benefit from a bifurcating [FeFe]-hydrogenase reaction; interestingly, no Archaea have been observed experimentally with a [FeFe]-hydrogenase enzyme.


Assuntos
Proteínas de Bactérias , Hidrogênio , Hidrogenase , Proteínas com Ferro-Enxofre , Thermotoga maritima/enzimologia , Anaerobiose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas com Ferro-Enxofre/química , Proteínas com Ferro-Enxofre/metabolismo , Oxirredução , Termodinâmica
18.
J Am Chem Soc ; 142(3): 1227-1235, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31816235

RESUMO

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.

19.
Nat Commun ; 10(1): 3548, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391460

RESUMO

Microbial fermentation of lignocellulosic biomass to produce industrial chemicals is exacerbated by the recalcitrant network of lignin, cellulose and hemicelluloses comprising the plant secondary cell wall. In this study, we show that transgenic poplar (Populus trichocarpa) lines can be solubilized without any pretreatment by the extreme thermophile Caldicellulosiruptor bescii that has been metabolically engineered to shift its fermentation products away from inhibitory organic acids to ethanol. Carbohydrate solubilization and conversion of unpretreated milled biomass is nearly 90% for two transgenic lines, compared to only 25% for wild-type poplar. Unexpectedly, unpretreated intact poplar stems achieved nearly 70% of the fermentation production observed with milled poplar as the substrate. The nearly quantitative microbial conversion of the carbohydrate content of unpretreated transgenic lignocellulosic biomass bodes well for full utilization of renewable biomass feedstocks.


Assuntos
Clostridiales/metabolismo , Fermentação , Microbiologia Industrial , Engenharia Metabólica , Populus/metabolismo , Biomassa , Celulose/metabolismo , Clostridiales/genética , Etanol/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Populus/química , Populus/genética
20.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253673

RESUMO

Contamination of environments with nitrate generated by industrial processes and the use of nitrogen-containing fertilizers is a growing problem worldwide. While nitrate can be removed from contaminated areas by microbial denitrification, nitrate frequently occurs with other contaminants, such as heavy metals, that have the potential to impede the process. Here, nitrate-reducing microorganisms were enriched and isolated from both groundwater and sediments at the Oak Ridge Reservation (ORR) using concentrations of nitrate and metals (Al, Mn, Fe, Co, Ni, Cu, Cd, and U) similar to those observed in a contaminated environment at ORR. Seven new metal-resistant, nitrate-reducing strains were characterized, and their distribution across both noncontaminated and contaminated areas at ORR was examined. While the seven strains have various pH ranges for growth, carbon source preferences, and degrees of resistance to individual and combinations of metals, all were able to reduce nitrate at similar rates both in the presence and absence of the mixture of metals found in the contaminated ORR environment. Four strains were identified in groundwater samples at different ORR locations by exact 16S RNA sequence variant analysis, and all four were found in both noncontaminated and contaminated areas. By using environmentally relevant metal concentrations, we successfully isolated multiple organisms from both ORR noncontaminated and contaminated environments that are capable of reducing nitrate in the presence of extreme mixed-metal contamination.IMPORTANCE Nitrate contamination is a global issue that affects groundwater quality. In some cases, cocontamination of groundwater with nitrate and mixtures of heavy metals could decrease microbially mediated nitrate removal, thereby increasing the duration of nitrate contamination. Here, we used metal and nitrate concentrations that are present in a contaminated site at the Oak Ridge Reservation to isolate seven metal-resistant strains. All were able to reduce nitrate in the presence of high concentrations of a mixture of heavy metals. Four of seven strains were located in pristine as well as contaminated sites at the Oak Ridge Reservation. Further study of these nitrate-reducing strains will uncover mechanisms of resistance to multiple metals that will increase our understanding of the effect of nitrate and metal contamination on groundwater microbial communities.


Assuntos
Bactérias/metabolismo , Desnitrificação , Resistência a Medicamentos , Água Subterrânea/microbiologia , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/efeitos dos fármacos , Água Subterrânea/química , Tennessee
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...