Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 57(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34684095

RESUMO

Urogenital schistosomiasis is caused by Schistosoma haematobium (S. haematobium) infection, which has been linked to the development of bladder cancer. In this study, three repurposing drugs, ivermectin, arteether and praziquantel, were screened to find the potent drug-repurposing candidate against the Schistosoma-associated bladder cancer (SABC) in humans by using computational methods. The biology of most glutathione S-transferases (GSTs) proteins and vascular endothelial growth factor (VEGF) is complex and multifaceted, according to recent evidence, and these proteins actively participate in many tumorigenic processes such as cell proliferation, cell survival and drug resistance. The VEGF and GSTs are now widely acknowledged as an important target for antitumor therapy. Thus, in this present study, ivermectin displayed promising inhibition of bladder cancer cells via targeting VEGF and GSTs signaling. Moreover, molecular docking and molecular dynamics (MD) simulation analysis revealed that ivermectin efficiently targeted the binding pockets of VEGF receptor proteins and possessed stable dynamics behavior at binding sites. Therefore, we proposed here that these compounds must be tested experimentally against VEGF and GST signaling in order to control SABC. Our study lies within the idea of discovering repurposing drugs as inhibitors against the different types of human cancers by targeting essential pathways in order to accelerate the drug development cycle.

2.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641501

RESUMO

Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11ß-hydroxysteroid dehydrogenase (11ß-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from -8.1 to -7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.

3.
Curr Pharm Des ; 2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34459371

RESUMO

COVID-19 is a respiratory disease caused by a newly identified coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its inception in late December 2019, COVID-19 has led to a remarkable loss of human life all over the world. To overcome the unprecedented challenges posed by COVID-19 pandemic to the public and economic health, strengthening of the healthcare system is utmost needed. In this regard, research communities are putting efforts in developing an advanced healthcare system, that could reduce the severe impacts of this pandemic. Nanotechnology is such an advanced technology which has contributed significantly in producing powerful arsenals for the frontline warriors, in this battle against COVID-19. It has offer opportunities for development of fast and accurate point-of-care testing, efficient therapeutics and vaccines, potent sanitizers, facemasks, personal protective equipment etc. against SARS-CoV-2. However, associated toxicity, long procedures of clinical trials, uncertain health risks etc. are some points which are still debatable. The present paper provides an overview of COVID-19 specific therapeutics and vaccines with an emphasis on nano-based strategies, which are significantly contributing towards the success of mitigation measures and strategies against COVID-19. Furthermore, the associated challenges, current limitations, and opportunities in this field are discussed.

4.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204669

RESUMO

Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm-1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.


Assuntos
Abelmoschus/química , Mucilagem Vegetal/química , Mucilagem Vegetal/isolamento & purificação , Abelmoschus/metabolismo , Antioxidantes/química , Biopolímeros/análise , Biopolímeros/química , Suplementos Nutricionais , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , alfa-Amilases/química , alfa-Glucosidases/química
5.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199316

RESUMO

Herbs and spices have been used since antiquity for their nutritional and health properties, as well as in traditional remedies for the prevention and treatment of many diseases. Therefore, this study aims to perform a chemical analysis of both essential oils (EOs) from the seeds of Carum carvi (C. carvi) and Coriandrum sativum (C. sativum) and evaluate their antioxidant, antimicrobial, anti-acetylcholinesterase, and antidiabetic activities alone and in combination. Results showed that the EOs mainly constitute monoterpenes with γ-terpinene (31.03%), ß-pinene (18.77%), p-cymene (17.16%), and carvone (12.20%) being the major components present in C. carvi EO and linalool (76.41%), γ-terpinene (5.35%), and α-pinene (4.44%) in C. sativum EO. In comparison to standards, statistical analysis revealed that C. carvi EO showed high and significantly different (p < 0.05) antioxidant activity than C. sativum EO, but lower than the mixture. Moreover, the mixture exhibited two-times greater ferric ion reducing antioxidant power (FRAP) (IC50 = 11.33 ± 1.53 mg/mL) and equipotent chelating power (IC50 = 31.33 ± 0.47 mg/mL) than the corresponding references, and also potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 19.00 ± 1.00 mg/mL), ß-carotene (IC50 = 11.16 ± 0.84 mg/mL), and superoxide anion (IC50 = 10.33 ± 0.58 mg/mL) assays. Antimicrobial data revealed that single and mixture EOs were active against a panel of pathogenic microorganisms, and the mixture had the ability to kill more bacterial strains than each EO alone. Additionally, the anti-acetylcholinesterase and α-glucosidase inhibitory effect have been studied for the first time, highlighting the high inhibition effect of AChE by C. carvi (IC50 = 0.82 ± 0.05 mg/mL), and especially by C. sativum (IC50 = 0.68 ± 0.03 mg/mL), as well as the mixture (IC50 = 0.63 ± 0.02 mg/mL) compared to the reference drug, which are insignificantly different (p > 0.05). A high and equipotent antidiabetic activity was observed for the mixture (IC50 = 0.75 ± 0.15 mg/mL) when compared to the standard drug, acarbose, which is about nine times higher than each EO alone. Furthermore, pharmacokinetic analysis provides some useful insights into designing new drugs with favorable drug likeness and safety profiles based on a C. carvi and C. sativum EO mixture. In summary, the results of this study revealed that the combination of these EOs may be recommended for further food, therapeutic, and pharmaceutical applications, and can be utilized as medicine to inhibit several diseases.


Assuntos
Acetilcolinesterase/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Carum/química , Coriandrum/química , Hipoglicemiantes/farmacologia , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Antioxidantes/química , Antioxidantes/farmacocinética , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Óleos Voláteis/química , Óleos Voláteis/farmacocinética , Sementes/química
6.
J Biomol Struct Dyn ; : 1-14, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254564

RESUMO

The main objective of this study is to find out the anti-SARS-CoV-2 potential of emetine by using molecular docking and dynamic simulation approaches. Interestingly, molecular docking studies suggest that Emetine showed significant binding affinity toward Nsp15 (-10.8 kcal/mol) followed by Nsp12 (-9.5 kcal/mol), RNA-dependent RNA polymerase, RdRp (-9.5 kcal/mol), Nsp16 (-9.4 kcal/mol), Nsp10 (-9.2 kcal/mol), Papain-like protein (-9.0 kcal/mol), Nsp13 (-9.0 kcal/mol), Nsp14 (-8.9 kcal/mol) and Spike Protein Receptor Domain (-8.8 kcal/mol) and chymotrypsin-like protease, 3CLpro (-8.5 kcal/mol), respectively, which are essential for viral infection and replication. In addition, molecular dynamic simulation (MD) was also performed for 140 ns to explore the stability behavior of the main targets and inhibitor complexes as well as the binding mechanics of the ligand to the target proteins. The obtained MD results followed by absolute binding energy calculation confirm that the binding of emetine at the level of the various receptors is more stable. The complex EmetineNSP15, mechanistically was stabilized as follows: Emetine first binds to the monomer, after, binds to the second inducing the formation of a dimer which in turn leading to the formation of complex that simulation stabilizes it at a value less than 5 Å. Overall, supported by the powerful and good pharmacokinetic data of Emetine, our findings with clinical trials may be helpful to confirm that Emetine could be promoted in the prevention and eradication of COVID-19 by reducing the severity in the infected persons and therefore can open possible new strategies for drug repositioning. Communicated by Ramaswamy H. Sarma.

7.
Foods ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203950

RESUMO

In this study, the antioxidant and anti-inflammatory effects of Zingiber officinale roscoe and Allium subhirsutum aqueous extracts were examined in a carrageenan-induced acute inflammation model. Some markers of inflammation such as hematological parameters, fibrinogen and C-reactive protein were measured. Variables reflecting oxidative stress included thiobarbituric acid reactive substances (TBARS), advanced oxidation of protein products (AOPP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione were determined in both inflamed foci and erythrocytes. The in silico molecular docking simulation showed that the main components of Zingiber officinale roscoe and Allium subhirsutum bound to toll-like receptor 6 (TLR6) with high affinities. Moreover, histological examinations of paw edema were carried out. Both Zingiber officinale roscoe and Allium subhirsutum ameliorated the induced inflammation and oxidative stress status as outlined by anti-edematous, antioxidant and anti-inflammatory activities. Our investigation lends pharmacological support to the medical uses of these spices in the management of inflammatory disorders and oxidative damage. The results of the in silico assay satisfactory explain the in vivo effects as compared with indomethacin.

8.
Plants (Basel) ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068885

RESUMO

Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.

9.
Bull Cancer ; 108(7-8): 718-724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34052033

RESUMO

Genetic predisposition has been always noted in the context of familial hematological malignancies. Epidemiological studies have provided evidence consisting of an increased risk to develop blood cancer in relatives diagnosed with the same pathology and characterized by early age at diagnosis and higher severity compared to sporadic forms. With the emergence of new genomic testing approaches, the prevalence of familial aggregations of hematological malignancies seems to be under estimated. The heterogeneity of clinical features explains the wide number of genes' mutations reported to date and the variable penetrance of variants. Nevertheless, the genetic basis of familial hematological malignancies is still not well understood. Identifying the genetic background in familial aggregations provides a valuable tool for prognostic evaluation, personalized treatment and better genetic counseling in high-risk families. Herein, we provide an overview of genes reported in the last few years in association to hematological malignancies including familial form of Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, acute Myeloid Leukemia and acute Lymphoblastic Leukemia.


Assuntos
Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Fatores Etários , Família , Neoplasias Hematológicas/epidemiologia , Doença de Hodgkin/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Mieloide Aguda/genética , Linfoma não Hodgkin/genética , Mutação , Penetrância , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico
10.
Antioxidants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924005

RESUMO

Asphodelus tenuifolius Cav. (A. tenuifolius) is a medicinal plant with a long history of traditional use to treat ailments. In this study, total phenolic and flavonoid content evaluation using LC-ESI/MS analysis and various biological activities (antioxidant, antibacterial, antifungal, antiviral and cytotoxicity) of organic extracts from the aerial parts of A. tenuifolius were analyzed. ADME tools were used to predict the potential of the identified compounds from the most potent extract as specific drugs. As shown, LC-ESI/MS results of chloroformic extract allowed the tentative identification of 12 compounds. Chloroformic extract was rich in polyphenols and flavonoids and exhibited the highest antioxidant activity given by DPPH (IC50 = 25 µg/mL) as compared to the BHT standard (11.5 µg/mL) and ß-carotene bleaching assays (IC50 = 95.692 µg/mL). Antibacterial activity results showed that chloroformic extract has a highest activity against Gram-positive and -negative bacteria, especially against Salmonella Typhimurium DT104 (IZ = 19.3 mm, MIC = 18.75 mg/mL, MBC = 37.5 mg/mL). The MBC/MIC ratio was evaluated to interpret the activity that was bacteriostatic rather than bactericidal. Conversely, weaker antifungal activity was registered, and no antiviral activity was observed for all extracts against Herpes Simplex Virus type 2 and Coxsakievirus B-3 viruses. Cytotoxic activity on VERO cell line results revealed that butanol extract was not toxic, with CC50 value of 1430 µg/mL, while chloroformic extract showed moderate cytotoxicity. Additionally, in silico studies performed proved promising pharmacokinetic and drug-likeness properties of the main compounds from the chloroformic extract. Taken together, this work highlights the potent bioactivity and acceptable drug-likeness of this plant, which supports its further preclinical development.

11.
Med Image Anal ; 70: 102032, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773296

RESUMO

Feature vectors provided by pre-trained deep artificial neural networks have become a dominant source for image representation in recent literature. Their contribution to the performance of image analysis can be improved through fine-tuning. As an ultimate solution, one might even train a deep network from scratch with the domain-relevant images, a highly desirable option which is generally impeded in pathology by lack of labeled images and the computational expense. In this study, we propose a new network, namely KimiaNet, that employs the topology of the DenseNet with four dense blocks, fine-tuned and trained with histopathology images in different configurations. We used more than 240,000 image patches with 1000×1000 pixels acquired at 20× magnification through our proposed "high-cellularity mosaic" approach to enable the usage of weak labels of 7126 whole slide images of formalin-fixed paraffin-embedded human pathology samples publicly available through The Cancer Genome Atlas (TCGA) repository. We tested KimiaNet using three public datasets, namely TCGA, endometrial cancer images, and colorectal cancer images by evaluating the performance of search and classification when corresponding features of different networks are used for image representation. As well, we designed and trained multiple convolutional batch-normalized ReLU (CBR) networks. The results show that KimiaNet provides superior results compared to the original DenseNet and smaller CBR networks when used as feature extractor to represent histopathology images.


Assuntos
Neoplasias , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias/diagnóstico por imagem
12.
Sci Total Environ ; 768: 144990, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736303

RESUMO

A rapid increase in world population is leading to the rise in global demand of food and agriculture (agri) products. Nanotechnology and its applications have emerged as one of the most pioneering and promising technology for transforming conventional food and agri industries, with the aim of sustainable farming, improving the food security, quality and safety which could revolutionize the food and agri industries. Current developments in nanotechnology have led to the new paths progressively and bringing the radical changes the way food is perceived throughout the farming, transportation, processing, packaging, storage, monitoring and consumption. This review brings the current updates on novel nanomaterials in food and agri industries. Emphasis is given on the importance of nanotechnological applications, offering complete food solutions from farm to fork; including nutraceutical and functional foods, improving bioavailability, efficiency, nutritional status, nano-additives, food texture, color, taste and packaging. Agricultural sector also witnessed several nano-based products, such as nano-fertilizer, nano-pesticide, nano growth promoters and many more for the development of sustainable farming and crop improvement. Despite of numerous advantages of nanotechnology, there are still toxicity challenges, safety concerns, which needs to be addressed and demands transformations in regulatory policies. Rapid development is projected to transform several foods and agri sectors, with rapid increase in market stake and investment. Government agencies, private research centers as well as academicians are also coming together to explore the benefits of nanotechnology to improve food scarcity in the coming years.

13.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525415

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inducing coronavirus disease 2019 (COVID-19) is still an ongoing challenge. To date, more than 95.4 million have been infected and more than two million deaths have been officially reported by the WHO. Angiotensin-converting enzyme (ACE) plays a key role in the disease pathogenesis. In this computational study, seventeen coding variants were found to be important for ACE2 binding with the coronavirus spike protein. The frequencies of these allele variants range from 3.88 × 10-3 to 5.47 × 10-6 for rs4646116 (K26R) and rs1238146879 (P426A), respectively. Chloroquine (CQ) and its metabolite hydroxychloroquine (HCQ) are mainly used to prevent and treat malaria and rheumatic diseases. They are also used in several countries to treat SARS-CoV-2 infection inducing COVID-19. Both CQ and HCQ were found to interact differently with the various ACE2 domains reported to bind with coronavirus spike protein. A molecular docking approach revealed that intermolecular interactions of both CQ and HCQ exhibited mediation by ACE2 polymorphism. Further explorations of the relationship and the interactions between ACE2 polymorphism and CQ/HCQ would certainly help to better understand the COVID-19 management strategies, particularly their use in the absence of specific vaccines or drugs.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cloroquina/química , Hidroxicloroquina/química , Simulação de Acoplamento Molecular , Polimorfismo Genético , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/tratamento farmacológico , COVID-19/metabolismo , Cloroquina/farmacocinética , Cloroquina/uso terapêutico , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/uso terapêutico , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525745

RESUMO

Recently, there has been a paradigm shift from conventional therapies to relatively safer phytotherapies. This divergence is crucial for the management of various chronic diseases. Okra (Abelmoschus esculentus L.) is a popular vegetable crop with good nutritional significance, along with certain therapeutic values, which makes it a potential candidate in the use of a variety of nutraceuticals. Different parts of the okra fruit (mucilage, seed, and pods) contain certain important bioactive components, which confer its medicinal properties. The phytochemicals of okra have been studied for their potential therapeutic activities on various chronic diseases, such as type-2 diabetes, cardiovascular, and digestive diseases, as well as the antifatigue effect, liver detoxification, antibacterial, and chemo-preventive activities. Moreover, okra mucilage has been widely used in medicinal applications such as a plasma replacement or blood volume expanders. Overall, okra is considered to be an easily available, low-cost vegetable crop with various nutritional values and potential health benefits. Despite several reports about its therapeutic benefits and potential nutraceutical significance, there is a dearth of research on the pharmacokinetics and bioavailability of okra, which has hampered its widespread use in the nutraceutical industry. This review summarizes the available literature on the bioactive composition of okra and its potential nutraceutical significance. It will also provide a platform for further research on the pharmacokinetics and bioavailability of okra for its possible commercial production as a therapeutic agent against various chronic diseases.


Assuntos
Abelmoschus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Doença Crônica/tratamento farmacológico , Dieta/métodos , Suplementos Nutricionais , Frutas/química , Humanos , Fitoterapia/métodos , Extratos Vegetais/química
15.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540783

RESUMO

In this study, we investigated the bioactive potential (antibacterial and antioxidant), anticancer activity and detailed phytochemical analysis of Selaginellarepanda (S. repanda) ethanolic crude extract for the very first time using different in vitro approaches. Furthermore, computer-aided prediction of pharmacokinetic properties and safety profile of the identified phytoconstituents were also employed in order to provide some useful insights for drug discovery. S. repanda, which is a rich source of potent natural bioactive compounds, showed promising antibacterial activity against the tested pathogenic bacteria (S. aureus, P. aeruginosa, E. coli and S. flexneri). The crude extract displayed favorable antioxidant activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 231.6 µg/mL) and H2O2 (IC50 = 288.3 µg/mL) molecules. S. repanda also showed favorable and effective anticancer activity against all three malignant cancer cells in a dose/time dependent manner. Higher activity was found against lung (A549) (IC50 = 341.1 µg/mL), followed by colon (HCT-116) (IC50 = 378.8 µg/mL) and breast (MCF-7) (IC50 = 428.3 µg/mL) cancer cells. High resolution-liquid chromatography-mass spectrometry (HR-LC-MS) data of S. repanda crude extract revealed the presence of diverse bioactive/chemical components, including fatty acids, alcohol, sugar, flavonoids, alkaloids, terpenoids, coumarins and phenolics, which can be the basis and major cause for its bioactive potential. Therefore, achieved results from this study confirmed the efficacy of S. repanda and a prospective source of naturally active biomolecules with antibacterial, antioxidant and anticancer potential. These phytocompounds alone with their favorable pharmacokinetics profile suggests good lead and efficiency of S. repanda with no toxicity risks. Finally, further in vivo experimental investigations can be promoted as probable candidates for various therapeutic functions, drug discovery and development.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Neoplasias Pulmonares/patologia , Extratos Vegetais/farmacocinética , Extratos Vegetais/toxicidade
16.
Environ Sci Pollut Res Int ; 28(20): 25349-25367, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33454827

RESUMO

Pergularia tomentosa L. (P. tomentosa) has been largely used in Tunisian folk medicine as remedies against skin diseases, asthma, and bronchitis. The main objectives of this study were to identify phytochemical compounds that have antioxidant and antimicrobial properties from the stem, leaves, and fruit crude methanolic extracts of P. tomentosa, and to search for tyrosyl-tRNA synthetase (TyrRS), topoisomerase type IIA, and Candidapepsin-1 (SAP1) enzyme inhibitors through molecular docking study. Phytochemical quantification revealed that fruit and leaves extracts displayed the highest total flavonoids (582 mg QE/g Ex; 219 mg QE/g Ex) and tannins content (375 mg TAE/g Ex; 216 mg TAE/g Ex), also exhibiting significant scavenging activity to decrease free radicals for ABTS, DPPH, ß-carotene, and FRAP assay with IC50 values (> 1 mg/mL). Additionally, promising antimicrobial activities towards different organs have been observed against several bacteria and Candida strains. From the liquid chromatography-mass spectrometry (LC-MS) analysis, five polyphenolic compounds, namely digitoxigenin, digitonin glycoside and calactina in the leaves, kaempferol in the fruit, and calotropagenin in the stems, were identified. They were also analyzed for their drug likeliness, based on computational methods. Molecular docking study affirmed that the binding affinity of calactin and actodigin to the active site of TyrRS, topoisomerase type IIA, and SAP1 target virulence proteins was the highest among the examined dominant compounds. Therefore, this study indicated that P. tomentosa methanolic extracts displayed great potential to become a potent antimicrobial agent and might be a promising source for therapeutic and nutritional functions. These phytocompounds could be further promoted as a candidate for drug discovery and development.


Assuntos
Anti-Infecciosos , Caryophyllaceae/classificação , Tirosina-tRNA Ligase , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Frutas , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Virulência , Fatores de Virulência
17.
Anticancer Agents Med Chem ; 21(2): 201-206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32329697

RESUMO

BACKGROUND AND OBJECTIVE: ERK pathway is one of the most crucial pathways in lung cancer metastasis. Targeting its pathway is decisive in lung cancer research. Thus, this study demonstrated for the first time for significant and selective anti-metastatic effects of lupeol against lung cancer A549 cells via perturbations in the ERK signaling pathway. MATERIALS AND METHODS: Human protein targets of lupeol were predicted in silico. Migration and cytotoxicity assays were carried out in vitro. Expression levels of proteins Erk1/2 and pErk1/2 were ensured using Enzyme- Linked Immunosorbent Assay (ELISA). Semi-quantitative RT-PCR technique was used to estimate changes in crucial mesenchymal marker gene expression levels of N-cadherin and vimentin. RESULTS: Lupeol was found to target ERK and MEK proteins effectively. Despite having no cytotoxic effects, lupeol also significantly inhibited cell migration in A549 cells with decreased expression of the pErk1/2 protein along with N-cadherin and vimentin genes. CONCLUSION: Lupeol inhibits cell migration, showed no cytotoxic effects on A549 cells, decreased pErk1/2 and EMT gene expression. Thus, it can serve as a potential ERK pathway inhibitor in lung cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Células A549 , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle
18.
Drug Des Devel Ther ; 14: 5325-5336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293794

RESUMO

Purpose: The present work aimed at challenging the efficacy of natural gums, karaya and locust bean gum, as matrix-forming polymers for the formulation of sustained-release tablets of diltiazem, a model drug. Methods: Central design composite was adopted for the formulation and optimization of tablet formulations. The two gums have been selected as independent variables. The dependent factors chosen were the amount of drug released in 1st hour (Y1), amount of drug released after 12 h (Y2), diffusion exponent (Y3), and time for half of the total drug released (T50%) (Y4). Wet granulation approach was used for the formulation of tablets. FT-IR, DSC, in vitro dissolution, swelling-erosion investigations, SEM, and stability studies were carried out. Results and Discussion: It was evident that the release pattern from the prepared formulations was significantly influenced by the quantity of gum(s) in the tablet. FT-IR and DSC results confirm drug-polymer compatibility. Polynomial equations were used for the prediction of quantitative impact of independent factors at different levels on response variables. After ANOVA analysis, the significant factors were considered for constrained optimization to get the optimized formula. The optimized formula generated by the response surface methodology was evaluated both for in vitro and in vivo properties. The optimized formula and a sustained-release marketed product were subjected to in vivo studies in rabbits and the results of the t-test demonstrated insignificant variation in pharmacokinetic parameters among the two formulations, confirming that the prepared tablet showed sustained-release profile. Conclusion: The results indicated that karaya and locust bean gum can be effectively used to formulate sustained-release tablets.

19.
Antioxidants (Basel) ; 9(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167507

RESUMO

In this study, we investigate the phytochemical profile, anticancer, and antioxidant activities of Teucrium polium methanolic extract using both in vitro and in silico approaches. The results showed the identification of 29 phytochemical compounds belonging to 13 classes of compounds and 20 tripeptides using High Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS). 13R-hydroxy-9E,11Z octadecadienoic acid, dihydrosamidin, valtratum, and cepharantine were the main compounds identified. The tested extract showed promising antioxidant activities (ABTS-IC50 = 0.042 mg/mL; 1,1-diphenyl-2-picrylhydrazyl (DPPH)-IC50 = 0.087 mg/mL, ß-carotene-IC50 = 0.101 mg/mL and FRAP-IC50 = 0.292 mg/mL). Using both malignant Walker 256/B and MatLyLu cell lines, T. polium methanolic extract showed a dose/time-dependent antitumor activity. The molecular docking approach revealed that most of the identified molecules were specifically binding with human peroxiredoxin 5, human androgen, and human progesterone receptors with high binding affinity scores. The obtained results confirmed that T. polium is a rich source of bioactive molecules with antioxidant and antitumor potential.

20.
Plants (Basel) ; 9(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114026

RESUMO

The chemical profile of Teucrium polium L. (T. polium) methanolic extract was tested using liquid chromatography coupled with high resolution mass spectrometry (HR-LCMS). Disc diffusion and microdilution assays were used for the antimicrobial activities. Coxsackievirus B-3 (CVB3) and Herpes simplex virus type 2 (HSV-2) were used for the antiviral activities. Chromobacterium violaceum (ATCC 12472 and CV026) and Pseudomonas aeruginosa PAO1 were used as starter strains for the anti-quorum sensing tests. Isoprenoids are the main class of compounds identified, and 13R-hydroxy-9E,11Z-octadecadienoic acid, valtratum, rhoifolin, sericetin diacetate, and dihydrosamidin were the dominant phytoconstituents. The highest mean diameter of growth inhibition zone was recorded for Acinetobacter baumannii (19.33 ± 1.15 mm). The minimal inhibitory concentrations were ranging from 6.25 to 25 mg/mL for bacterial strains, and from 6.25 to 25 mg/mL for Candida species. The 50% cytotoxic concentration on VERO (African Green Monkey Kidney) cell lines was estimated at 209 µg/mL. No antiviral activity was recorded. Additionally, T. polium extract was able to inhibit P. aeruginosa PAO1 motility in a concentration-dependent manner. However, the tested extract was able to inhibit 23.66% of the swarming and 35.25% of swimming capacities of PAO1 at 100 µg/mL. These results highlighted the role of germander as a potent antimicrobial agent that can interfere with the virulence factors controlled by the quorum-sensing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...