Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Eur J Hum Genet ; 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34803161

RESUMO

Kabuki syndrome (KS) is a rare genetic disorder caused by mutations in two major genes, KMT2D and KDM6A, that are responsible for Kabuki syndrome 1 (KS1, OMIM147920) and Kabuki syndrome 2 (KS2, OMIM300867), respectively. We lack a description of clinical signs to distinguish KS1 and KS2. We used facial morphology analysis to detect any facial morphological differences between the two KS types. We used a facial-recognition algorithm to explore any facial morphologic differences between the two types of KS. We compared several image series of KS1 and KS2 individuals, then compared images of those of Caucasian origin only (12 individuals for each gene) because this was the main ethnicity in this series. We also collected 32 images from the literature to amass a large series. We externally validated results obtained by the algorithm with evaluations by trained clinical geneticists using the same set of pictures. Use of the algorithm revealed a statistically significant difference between each group for our series of images, demonstrating a different facial morphotype between KS1 and KS2 individuals (mean area under the receiver operating characteristic curve = 0.85 [p = 0.027] between KS1 and KS2). The algorithm was better at discriminating between the two types of KS with images from our series than those from the literature (p = 0.0007). Clinical geneticists trained to distinguished KS1 and KS2 significantly recognised a unique facial morphotype, which validated algorithm findings (p = 1.6e-11). Our deep-neural-network-driven facial-recognition algorithm can reveal specific composite gestalt images for KS1 and KS2 individuals.

2.
Clin Genet ; 100(5): 628-633, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415064

RESUMO

Biallelic variants in PUS3 have recently been recognized as a rare cause of neurodevelopmental disorders. Pseudouridine synthase-3 encoded by PUS3 is an enzyme important for modification of various RNAs, including transfer RNA (tRNA). Here we present the clinical and genetic features of 21 individuals with biallelic PUS3 variants: seven new and 14 previously reported individuals, where clinical features of two were updated. The clinical and genetic information were collected through collaborations or by literature search. All individuals were characterized by the local clinicians and the gene variants were identified by next generation sequencing (NGS) based methodologies. The clinical picture was dominated by global developmental delay, epilepsy, hypotonia and microcephaly. Gray sclera, which has previously been suggested to be a characteristic feature of PUS3-associated phenotypes, was reported in only seven individuals. The patients had some dysmorphic facial features, but a recognizable gestalt was not observed. In conclusion, homozygous and compound heterozygous PUS3 variants lead to a rare neurodevelopmental disorder. Further functional studies are necessary to understand involvement of PUS3 and tRNA biogenesis in normal and abnormal brain development.

3.
J Med Genet ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321324

RESUMO

BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.

5.
Genome Med ; 13(1): 63, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874999

RESUMO

BACKGROUND: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.

6.
Am J Med Genet A ; 185(6): 1803-1815, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33754465

RESUMO

High-throughput sequencing (HTS) improved the molecular diagnosis in individuals with intellectual deficiency (ID) and helped to broaden the phenotype of previously known disease-causing genes. We report herein four unrelated patients with isolated ID, carriers of a likely pathogenic variant in KCNQ2, a gene usually implicated in benign familial neonatal seizures (BFNS) or early onset epileptic encephalopathy (EOEE). Patients were diagnosed by targeted HTS or exome sequencing. Pathogenicity of the variants was assessed by multiple in silico tools. Patients' ID ranged from mild to severe with predominance of speech disturbance and autistic features. Three of the four variants disrupted the same amino acid. Compiling all the pathogenic variants previously reported, we observed a strong overlap between variants causing EOEE, isolated ID, and BFNS and an important intra-familial phenotypic variability, although missense variants in the voltage-sensing domain and the pore are significantly associated to EOEE (p < 0.01, Fisher test). Thus, pathogenic variants in KCNQ2 can be associated with isolated ID. We did not highlight strong related genotype-phenotype correlations in KCNQ2-related disorders. A second genetic hit, a burden of rare variants, or other extrinsic factors may explain such a phenotypic variability. However, it is of interest to study encephalopathy genes in non-epileptic ID patients.


Assuntos
Canalopatias/genética , Epilepsia Neonatal Benigna/genética , Deficiência Intelectual/genética , Canal de Potássio KCNQ2/genética , Canalopatias/patologia , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/genética , Epilepsia/patologia , Epilepsia Neonatal Benigna/patologia , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação/genética , Potássio/metabolismo
7.
J Med Genet ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397746

RESUMO

BACKGROUND: Next-generation sequencing, combined with international pooling of cases, has impressively enhanced the discovery of genes responsible for Mendelian neurodevelopmental disorders, particularly in individuals affected by clinically undiagnosed diseases. To date, biallelic missense variants in ZNF526 gene, encoding a Krüppel-type zinc-finger protein, have been reported in three families with non-syndromic intellectual disability. METHODS: Here, we describe five individuals from four unrelated families with an undiagnosed neurodevelopmental disorder in which we performed exome sequencing, on a combination of trio-based (4 subjects) or single probands (1 subject). RESULTS: We identified five patients from four unrelated families with homozygous ZNF526 variants by whole exome sequencing. Four had variants resulting in truncation of ZNF526; they were affected by severe prenatal and postnatal microcephaly (ranging from -4 SD to -8 SD), profound psychomotor delay, hypertonic-dystonic movements, epilepsy and simplified gyral pattern on MRI. All of them also displayed bilateral progressive cataracts. A fifth patient had a homozygous missense variant and a slightly less severe disorder, with postnatal microcephaly (-2 SD), progressive bilateral cataracts, severe intellectual disability and unremarkable brain MRI.Mutant znf526 zebrafish larvae had notable malformations of the eye and central nervous system, resembling findings seen in the human holoprosencephaly spectrum. CONCLUSION: Our findings support the role of ZNF526 biallelic variants in a complex neurodevelopmental disorder, primarily affecting brain and eyes, resulting in severe microcephaly, simplified gyral pattern, epileptic encephalopathy and bilateral cataracts.

8.
J Inherit Metab Dis ; 44(2): 415-425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929747

RESUMO

TANGO2 disease is a severe inherited disorder associating multiple symptoms such as metabolic crises, encephalopathy, cardiac arrhythmias, and hypothyroidism. The mechanism of action of TANGO2 is currently unknown. Here, we describe a cohort of 20 French patients bearing mutations in the TANGO2 gene. We found that the main clinical presentation was the association of neurodevelopmental delay (n = 17), acute metabolic crises (n = 17) and hypothyroidism (n = 12), with a large intrafamilial clinical variability. Metabolic crises included rhabdomyolysis (15/17), neurological symptoms (14/17), and cardiac features (12/17; long QT (n = 10), Brugada pattern (n = 2), cardiac arrhythmia (n = 6)) that required intensive care. We show previously uncharacterized triggers of metabolic crises in TANGO2 patients, such as some anesthetics and possibly l-carnitine. Unexpectedly, plasma acylcarnitines, plasma FGF-21, muscle histology, and mitochondrial spectrometry were mostly normal. Moreover, in patients' primary myoblasts, palmitate and glutamine oxidation rates, and the mitochondrial network were also normal. Finally, we found variable mitochondrial respiration and defective clearance of oxidized DNA upon cycles of starvation and refeeding. We conclude that TANGO2 disease is a life-threatening disease that needs specific cardiac management and anesthesia protocol. Mechanistically, TANGO2 disease is unlikely to originate from a primary mitochondrial defect. Rather, we suggest that mitochondrial defects are secondary to strong extrinsic triggers in TANGO2 deficient patients.

9.
Clin Genet ; 99(3): 407-417, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277917

RESUMO

White-Sutton syndrome is a rare developmental disorder characterized by global developmental delay, intellectual disabilities (ID), and neurobehavioral abnormalities secondary to pathogenic pogo transposable element-derived protein with zinc finger domain (POGZ) variants. The purpose of our study was to describe the neurocognitive phenotype of an unbiased national cohort of patients with identified POGZ pathogenic variants. This study is based on a French collaboration through the AnDDI-Rares network, and includes 19 patients from 18 families with POGZ pathogenic variants. All clinical data and neuropsychological tests were collected from medical files. Among the 19 patients, 14 patients exhibited ID (six mild, five moderate and three severe). The five remaining patients had learning disabilities and shared a similar neurocognitive profile, including language difficulties, dysexecutive syndrome, attention disorders, slowness, and social difficulties. One patient evaluated for autism was found to have moderate autism spectrum disorder. This study reveals that the cognitive phenotype of patients with POGZ pathogenic variants can range from learning disabilities to severe ID. It highlights that pathogenic variations in the same genes can be reported in a large spectrum of neurocognitive profiles, and that children with learning disabilities could benefit from next generation sequencing techniques.

10.
Sci Adv ; 6(49)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33268356

RESUMO

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.

11.
Neurol Genet ; 6(6): e520, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33134516

RESUMO

Objective: To delineate the phenotype associated with biallelic ATAD1 variants. Methods: We describe 2 new patients with ATAD1-related disorder diagnosed by whole-exome sequencing and compare their phenotype to 6 previous patients. Results: Patients 1 and 2 had a similar distinctive phenotype comprising congenital stiffness of limbs, absent spontaneous movements, weak sucking, and hypoventilation. Both had absent brainstem evoked auditory responses (BEARs). Patient 1 carried the homozygous p.(His357Argfs*15) variant in ATAD1. In the light of the finding in patient 1, a second reading of exome data for patient 2 revealed the novel homozygous p.(Gly128Val) variant. Conclusions: Analysis of the phenotypes of these 2 patients and of the 6 previous cases showed that biallelic ATAD1 mutations are responsible for a unique congenital encephalopathy likely comprising absent BEAR, different from hyperekplexia and other conditions with neonatal hypertonia.

12.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32954514

RESUMO

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Canais de Potássio Shab/genética , Adolescente , Adulto , Encefalopatias/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia/tendências , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
13.
J Inherit Metab Dis ; 43(6): 1349-1359, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700771

RESUMO

Bikunin (Bkn) isoforms are serum chondroitin sulfate (CS) proteoglycans synthesized by the liver. They include two light forms, that is, the Bkn core protein and the Bkn linked to the CS chain (urinary trypsin inhibitor [UTI]), and two heavy forms, that is, pro-α-trypsin inhibitor and inter-α-trypsin inhibitor, corresponding to UTI esterified by one or two heavy chains glycoproteins, respectively. We previously showed that the Western-blot analysis of the light forms could allow the fast and easy detection of patients with linkeropathy, deficient in enzymes involved in the synthesis of the initial common tetrasaccharide linker of glycosaminoglycans. Here, we analyzed all serum Bkn isoforms in a context of congenital disorders of glycosylation (CDG) and showed very specific abnormal patterns suggesting potential interests for their screening and diagnosis. In particular, genetic deficiencies in V-ATPase (ATP6V0A2-CDG, CCDC115-CDG, ATP6AP1-CDG), in Golgi manganese homeostasis (TMEM165-CDG) and in the N-acetyl-glucosamine Golgi transport (SLC35A3-CDG) all share specific abnormal Bkn patterns. Furthermore, for each studied linkeropathy, we show that the light abnormal Bkn could be further in-depth characterized by two-dimensional electrophoresis. Moreover, besides being interesting as a specific biomarker of both CDG and linkeropathies, Bkn isoforms' analyses can provide new insights into the pathophysiology of the aforementioned diseases.


Assuntos
alfa-Globulinas/metabolismo , Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Biomarcadores/sangue , Defeitos Congênitos da Glicosilação/sangue , Glicosilação , Humanos , Isoformas de Proteínas/metabolismo
14.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32553196

RESUMO

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Expressão Gênica/genética , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Alelos , Feminino , Variação Genética/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Fenótipo , Estabilidade Proteica
15.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452540

RESUMO

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Assuntos
Variação Genética/genética , Hérnia Diafragmática/diagnóstico por imagem , Hérnia Diafragmática/genética , Deformidades Congênitas dos Membros/diagnóstico por imagem , Deformidades Congênitas dos Membros/genética , Proteínas de Membrana/genética , Adulto , Sequência de Aminoácidos , Criança , Estudos de Coortes , Eletroencefalografia/métodos , Facies , Hérnia Diafragmática/fisiopatologia , Humanos , Recém-Nascido , Deformidades Congênitas dos Membros/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino
16.
Gene ; 753: 144793, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32446918

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a monogenic disorder and a common cause of intellectual disability (ID). Up to now, very few pathological variants other than the typical CGG-repeat expansion have been reported in the FMR1 gene. METHODS: A panel of 56 intellectual disability (ID) genes including the FMR1 gene was sequenced in a cohort of 300 patients with unexplained ID. To determine the effect of a new FMR1 variant, total RNA from peripheral blood cells was reverse transcribed, amplified by polymerase chain reaction and sequenced. RESULTS: We report a novel G to A point variant (c.801G > A) located at the last nucleotide of exon 8 in the FMR1 gene in one patient with ID. Direct sequencing of the RT-PCR products revealed that the transcript from the allele with G to A variant skips exon 8 entirely, resulting in a joining of exons 7 and 9. Skipping of exon 8 may result in an abnormal FMR1 protein (FMRP), which removes the highly conserved region that encoding the KH1 domain of FMRP. CONCLUSIONS: This report describes for the first time that a synonymous variant in the FMR1 gene is associated with an error in mRNA processing, leading preferentially to the production of an aberrant transcript without exon 8. This splice variant was associated with an unspecific clinical presentation, suggesting the need for more detailed investigation of silent variants in ID patients with a large spectrum of phenotypes.


Assuntos
Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Alelos , Estudos de Coortes , Éxons , Humanos , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Domínios Proteicos , Splicing de RNA , Análise de Sequência de RNA/métodos , Mutação Silenciosa , Expansão das Repetições de Trinucleotídeos
17.
Neuron ; 106(3): 404-420.e8, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135084

RESUMO

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.


Assuntos
Córtex Cerebral/metabolismo , RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Animais , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/patologia , RNA/metabolismo
18.
J Med Genet ; 57(6): 389-399, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32015000

RESUMO

BACKGROUND: Primary hereditary microcephaly (MCPH) comprises a large group of autosomal recessive disorders mainly affecting cortical development and resulting in a congenital impairment of brain growth. Despite the identification of >25 causal genes so far, it remains a challenge to distinguish between different MCPH forms at the clinical level. METHODS: 7 patients with newly identified mutations in CDK5RAP2 (MCPH3) were investigated by performing prospective, extensive and systematic clinical, MRI, psychomotor, neurosensory and cognitive examinations under similar conditions. RESULTS: All patients displayed neurosensory defects in addition to microcephaly. Small cochlea with incomplete partition type II was found in all cases and was associated with progressive deafness in 4 of them. Furthermore, the CDK5RAP2 protein was specifically identified in the developing cochlea from human fetal tissues. Microphthalmia was also present in all patients along with retinal pigmentation changes and lipofuscin deposits. Finally, hypothalamic anomalies consisting of interhypothalamic adhesions, a congenital midline defect usually associated with holoprosencephaly, was detected in 5 cases. CONCLUSION: This is the first report indicating that CDK5RAP2 not only governs brain size but also plays a role in ocular and cochlear development and is necessary for hypothalamic nuclear separation at the midline. Our data indicate that CDK5RAP2 should be considered as a potential gene associated with deafness and forme fruste of holoprosencephaly. These children should be given neurosensory follow-up to prevent additional comorbidities and allow them reaching their full educational potential. TRIAL REGISTRATION NUMBER: NCT01565005.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cocleares/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Cóclea/diagnóstico por imagem , Cóclea/metabolismo , Cóclea/patologia , Doenças Cocleares/diagnóstico por imagem , Doenças Cocleares/patologia , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Mutação , Neurogênese/genética , Linhagem , Retina/diagnóstico por imagem , Retina/patologia
19.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
20.
Hum Mutat ; 41(1): 69-80, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513310

RESUMO

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Canais de Potássio Shab/genética , Alelos , Estudos de Associação Genética/métodos , Genótipo , Humanos , Fenótipo , Canais de Potássio Shab/química , Canais de Potássio Shab/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...