Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Monit Assess ; 193(9): 575, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392406


Motor vehicles operating on the road are a significant source of Particulate Matter (PM) emissions depending on the fuels used in the vehicles. Gasoline and Diesel vehicles are directly responsible for the tailpipe PM emissions (specifically PM2.5: particles ≤ 2.5 µm), known as primary PM2.5 emissions. The other major direct emissions from the vehicles, which include volatile organic compounds (VOCs), and nitrogen oxides (NOx) contribute to the formation of secondary organic PM, also known as secondary organic aerosols (SOA), through some inter-related chemical reactions. The SOAs are highly toxic and contribute to a portion of total PM emissions. In this research, emission scenarios of both primary PM2.5 and SOA for a car-dependent expanding Australian city (Adelaide) were analyzed. The variability of traffic characteristics on road was considered and conducted a probabilistic emissions inventory for tailpipe primary PM2.5 and precursors, while statistical analysis of the probable chemical conversion ratios was considered for the SOA inventory. It was found that the tailpipe emissions from the vehicles were higher than the air quality standard, while the SOA contribution from the vehicles was not significantly high but contributed to the increase of total PM concentration. The analysis of the chemical transformation of SOA precursors justified the importance of conducting more detailed emissions modelling for sustainable urban air quality planning.

Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Austrália , Monitoramento Ambiental , Gasolina/análise , Material Particulado/análise , Emissões de Veículos/análise
Environ Monit Assess ; 189(8): 366, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28667544


The study focused to assess the level of efficiency (of both emissions and service quality) that can be achieved for the transport system in Dhaka City, Bangladesh. The assessment technique attempted to quantify the extent of eco-efficiency achievable for the system modifications due to planning or strategy. The eco-efficiency analysis was facilitated with a detailed survey data on Dhaka City transport system, which was conducted for 9 months in 2012-2013. Line source modelling (CALINE4) was incorporated to estimate the on-road emission concentration. The eco-efficiency of the transport systems was assessed with the 'multi-criteria analysis' (MCA) technique that enabled the valuation of systems' qualitative and quantitative parameters. As per the analysis, driving indiscipline on road can alone promise about 47% reductions in emissions, which along with the number of private vehicles were the important stressors that restrict achieving eco-efficiency in Dhaka City. Detailed analysis of the transport system together with the potential transport system scenarios can offer a checklist to the policy makers enabling to identify the possible actions needed that can offer greater services to the dwellers against lesser emissions, which in turn can bring sustainability of the system.

Conservação dos Recursos Naturais/métodos , Transportes/estatística & dados numéricos , Bangladesh , Cidades , Planejamento de Cidades , Eficiência , Monitoramento Ambiental , Inquéritos e Questionários