Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 159: 104977, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662430

RESUMO

Extensive research has shown that the early life stages of marine organisms are sensitive to ocean acidification (OA). Less is known, however, on whether larval settlement and metamorphosis may be affected, or by which mechanisms. These are key processes in the life cycle of most marine benthic organisms, since they mark the transition between the free swimming larval stage to benthic life. We investigated whether OA could affect the larval settlement success of the sea urchin Evechinus chloroticus, a key coastal species with ecological, economic and cultural importance in New Zealand. We performed four settlement experiments to test whether reduced seawater pH (ranging from 8.1 to 7.0, at an interval of ~0.2 pH units) alters larval settlement and metamorphosis success. Our results show that settlement success was not significantly reduced when the larvae were exposed to a range of reduced seawater pH treatments (8.1-7.0) at time of settlement (on direct effects). Similarly, when presented with crustose coralline algae (CCA) pre-conditioned in seawater pH of either pH 8.1 or 7.7 for 28 days, larval settlement success remained unaltered (on indirect effects). We conclude that competent larvae in this species are resilient to OA at time of settlement. Further research on a range of taxa that vary in settlement selectivity and behaviour is needed in order to fully understand the effects of OA on the life cycle of marine invertebrates and the consequences it might have for future coastal marine ecosystems.


Assuntos
Ecossistema , Ouriços-do-Mar , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva , Metamorfose Biológica
2.
Biol Lett ; 16(4): 20190849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264781

RESUMO

Crown-of-thorns seastar (COTS) outbreaks are a major threat to coral reefs. Although the herbivorous juveniles and their switch to corallivory are key to seeding outbreaks, they remain a black box in our understanding of COTS. We investigated the impact of a delay in diet transition due to coral scarcity in cohorts reared on crustose coralline algae for 10 months and 6.5 years before being offered coral. Both cohorts achieved an asymptotic size (16-18 mm diameter) on algae and had similar exponential growth on coral. After 6.5 years of herbivory, COTS were competent coral predators. This trophic and growth plasticity results in a marked age-size disconnect adding unappreciated complexity to COTS boom-bust dynamics. The potential that herbivorous juveniles accumulate in the reef infrastructure to seed outbreaks when favourable conditions arise has implications for management of COTS populations.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Recifes de Corais , Dieta , Herbivoria
3.
Ecol Evol ; 9(21): 12128-12143, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832148

RESUMO

Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2-month experiment was performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 17°C-pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no-flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near- and far-future OW and OA, individuals fully balanced their acid-base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pHT7.7 while in the extreme treatment (21°C-pHT7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21°C-pHT7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.

4.
Ecol Evol ; 9(15): 8465-8478, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410254

RESUMO

Life traits such as reproductive strategy can be determining factors of species evolutionary history and explain the resulting diversity patterns. This can be investigated using phylogeographic analyses of genetic units. In this work, the genetic structure of five asteroid genera with contrasting reproductive strategies (brooding: Diplasterias, Notasterias and Lysasterias versus broadcasting: Psilaster and Bathybiaster) was investigated in the Southern Ocean. Over 1,400 mtDNA cytochrome C oxidase subunit I (COI) sequences were analysed using five species delineation methods (ABGD, ASAP, mPTP, sGMYC and mGMYC), two phylogenetic reconstructions (ML and BA), and molecular clock calibrations, in order to examine the weight of reproductive strategy in the observed differences among phylogeographic patterns. We hypothesised that brooding species would show higher levels of genetic diversity and species richness along with a clearer geographic structuring than broadcasting species. In contrast, genetic diversity and species richness were not found to be significantly different between brooders and broadcasters, but broadcasters are less spatially structured than brooders supporting our initial hypothesis and suggesting more complex evolutionary histories associated to this reproductive strategy. Broadcasters' phylogeography can be explained by different scenarios including deep-sea colonisation routes, bipolarity or cosmopolitanism, and sub-Antarctic emergence for the genus Bathybiaster; Antarctic- New Zealand faunal exchanges across the Polar Front for the genus Psilaster. Brooders' phylogeography could support the previously formulated hypothesis of a past trans-Antarctic seaway established between the Ross and the Weddell seas during the Plio-Pleistocene. Our results also show, for the first time, that the Weddell Sea is populated by a mixed asteroid fauna originating from both the East and West Antarctic.

5.
Acta Neurobiol Exp (Wars) ; 79(1): 101-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31038489

RESUMO

The vagus nerve and several brainstem nuclei to which it projects have been closely associated with food intake. The aim of this study was to determine the degree to which the same or different information on food intake is processed by this nerve and by one of these nuclei, the external lateral parabrachial subnucleus (LPbNe). For this purpose, we analyzed the solid and liquid food intake of Wistar rats subjected to vagal deafferentation with capsaicin or lesions of the LPbNe. Vagotomized animals consumed significantly larger amounts of solid food during the first 24 h post­surgery but not at 48, 72, or 96 h. Animals with LPbNe lesions also consumed larger amounts of liquid and solid foods but only during periods of 60 min on day 5 and 90 min on day 6 post­surgery, respectively. According to these findings, both the vagus nerve and the LPbNe appear to be involved in short­term regulation of food intake, although they participate over different time scales. These data are discussed in terms of the potential importance of the vagal­parabrachial axis in the rapid processing of nutritional information from the upper gastrointestinal tract.


Assuntos
Ingestão de Alimentos/fisiologia , Núcleos Parabraquiais/lesões , Núcleos Parabraquiais/fisiologia , Nervo Vago/fisiologia , Animais , Peso Corporal , Capsaicina/toxicidade , Eletrólise/efeitos adversos , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/toxicidade , Sacarose/administração & dosagem , Fatores de Tempo , Vagotomia
6.
Zookeys ; (747): 141-156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674908

RESUMO

The present dataset is a compilation of georeferenced occurrences of asteroids (Echinodermata: Asteroidea) in the Southern Ocean. Occurrence data south of 45°S latitude were mined from various sources together with information regarding the taxonomy, the sampling source and sampling sites when available. Records from 1872 to 2016 were thoroughly checked to ensure the quality of a dataset that reaches a total of 13,840 occurrences from 4,580 unique sampling events. Information regarding the reproductive strategy (brooders vs. broadcasters) of 63 species is also made available. This dataset represents the most exhaustive occurrence database on Antarctic and Sub-Antarctic asteroids.

7.
PLoS One ; 12(8): e0183848, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850607

RESUMO

Antarctic marine organisms are adapted to an extreme environment, characterized by a very low but stable temperature and a strong seasonality in food availability arousing from variations in day length. Ocean organisms are particularly vulnerable to global climate change with some regions being impacted by temperature increase and changes in primary production. Climate change also affects the biotic components of marine ecosystems and has an impact on the distribution and seasonal physiology of Antarctic marine organisms. Knowledge on the impact of climate change in key species is highly important because their performance affects ecosystem functioning. To predict the effects of climate change on marine ecosystems, a holistic understanding of the life history and physiology of Antarctic key species is urgently needed. DEB (Dynamic Energy Budget) theory captures the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model is a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. In this study, we estimate the DEB model parameters for the bivalve Laternula elliptica using literature-extracted and field data. The DEB model we present here aims at better understanding the biology of L. elliptica and its levels of adaptation to its habitat with a special focus on food seasonality. The model parameters describe a metabolism specifically adapted to low temperatures, with a low maintenance cost and a high capacity to uptake and mobilise energy, providing this organism with a level of energetic performance matching that of related species from temperate regions. It was also found that L. elliptica has a large energy reserve that allows enduring long periods of starvation. Additionally, we applied DEB parameters to time-series data on biological traits (organism condition, gonad growth) to describe the effect of a varying environment in food and temperature on the organism condition and energy use. The DEB model developed here for L. elliptica allowed us to improve benchmark knowledge on the ecophysiology of this key species, providing new insights in the role of food availability and temperature on its life cycle and reproduction strategy.


Assuntos
Adaptação Fisiológica/fisiologia , Bivalves/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Modelos Biológicos , Estações do Ano , Animais , Mudança Climática , Ecossistema
8.
Appetite ; 118: 90-96, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28789870

RESUMO

Food preferences have been investigated in Wistar rats utilizing a learned concurrent flavor preference behavioral procedure. Previous studies have demonstrated that the perivagal administration of neurotoxin capsaicin disrupts the learning of preferences induced by intragastric administration of rewarding nutrients (pre-digested milk). The vagus nerve projects almost exclusively towards the nucleus of the solitary tract (NST), a brain medullary gateway for visceral signals. The objective of this study was to investigate the participation of the lateral portion of the dorsomedial region, the gelatinous subnucleus (SolG), in the learning of a concurrent preference task. Results show that unlike neurologically intact animals, which learn this task correctly, animals lesioned in the gelatinous part of NST manifest a disruption of discrimination learning. Thus, intakes of the flavored stimulus paired with predigested liquid diet and of the flavored stimulus paired with physiological saline were virtually identical. However, SolG- and sham-lesioned groups consumed similar total amounts of both flavors. These findings suggest that SolG, as a relay of the vagus nerve, along with its anatomical projection, the external lateral parabrachial subnucleus (LPBe), may constitute an anatomical axis that is important in the induction of concurrent flavor/side preferences. It also appears to be relevant in other behavioral processes that require rapid processing of information from the upper gastrointestinal tract.


Assuntos
Preferências Alimentares/fisiologia , Aprendizagem/fisiologia , Núcleo Solitário/fisiologia , Animais , Peso Corporal , Dieta , Masculino , Ratos , Ratos Wistar , Recompensa , Paladar , Nervo Vago/fisiologia
9.
Appetite ; 113: 231-238, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28259536

RESUMO

Sensory information from the upper gastrointestinal tract is critical in food intake regulation. Signals from different levels of the digestive system are processed to the brain, among other systems, via the vagus nerve, which mainly projects towards the nucleus of the solitary tract (NST). The objective of this study was to analyze the participation of the gelatinous part (SolG) of the NST in short-term food intake. One-third of the stomach food content was withdrawn at 5 min after the end of a meal, and food was then available ad libitum for different time periods. SolG-lesioned and control animals ingested a similar amount of the initial liquid meal, but the former consumed significantly smaller amounts and failed to compensate for the food deficit, whereas the controls re-ingested virtually the same amount as extracted. These data suggest that the SolG, as in the case of related anatomical structures such as the vagus nerve or external lateral parabrachial subnucleus, may be relevant in particular circumstances that require the rapid processing of vagal-related food intake adjustment associated to the upper gastrointestinal tract.


Assuntos
Regulação do Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Núcleo Solitário/fisiologia , Animais , Alimentos , Conteúdo Gastrointestinal , Masculino , Ratos , Ratos Wistar , Nervo Vago/fisiologia
10.
Brain Res Bull ; 127: 126-133, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27628665

RESUMO

Sensory information from the gastrointestinal system can be transmitted to the brain through the vagus nerve, the intermediate-caudal region of the nucleus of the solitary tract (NST), and various subnuclei of the parabrachial complex, notably the external lateral subnucleus (LPBe). The objective of the present study was to examine the relevance of this subnucleus in satiation and food reintake after gastrointestinal food removal. LPBe-lesioned animals were subjected to a re-intake task following the partial withdrawal of gastric food contents shortly after satiation. Lesioned and control animals ingested a similar amount of the initial liquid meal. However, after withdrawal of one-third of the food consumed, LPBe-lesioned rats were not able to compensate for the deficit created, and their re-intake of food was significantly lower than the amount withdrawn after the satiating meal. In contrast, the food re-intake of control animals was similar to the amount withdrawn. Hence, the LPBe does not appear to be critical in the satiation process under the present experimental conditions. However, the LPBe may be part of a system that is essential in rapid visceral adjustments related to short-term food intake, as also shown in other gastrointestinal regulatory behaviors that require immediate processing of visceral sensory information.


Assuntos
Ingestão de Alimentos/fisiologia , Núcleos Parabraquiais/fisiologia , Saciação/fisiologia , Estômago/fisiologia , Animais , Peso Corporal , Cateteres de Demora , Alimentos , Privação de Alimentos , Masculino , Modelos Animais , Distribuição Aleatória , Ratos Wistar
11.
Brain Res Bull ; 124: 182-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173444

RESUMO

The central nucleus of the amygdala (CeA) is considered to be involved in different affective, sensory, regulatory, and acquisition processes. This study analyzed whether electrical stimulation of the PB-CeA system induces preferences in a concurrent place preference (cPP) task, as observed after stimulation of the parabrachial-insular cortex (PB-IC) axis. It also examined whether the rewarding effects are naloxone-dependent. The results show that electrical stimulation of the CeA and external lateral parabrachial subnucleus (LPBe) induces consistent preference behaviors in a cPP task. However, subcutaneous administration of an opiate antagonist (naloxone; 4mg/ml/kg) blocked the rewarding effect of the parabrachial stimulation but not that of the amygdala stimulation. These results are interpreted in the context of multiple brain reward systems that appear to differ both anatomically and neurochemically, notably with respect to the opiate system.


Assuntos
Núcleo Central da Amígdala/efeitos dos fármacos , Estimulação Elétrica , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Recompensa , Análise de Variância , Animais , Biofísica , Núcleo Central da Amígdala/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Núcleos Parabraquiais/fisiologia , Ratos , Ratos Wistar , Autoadministração
12.
Glob Chang Biol ; 22(12): 3874-3887, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27029504

RESUMO

Due to climatic warming, Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high-risk invader of the sub-Antarctic and Antarctic. To assess the potential range expansion of A. amurensis to the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adult A. amurensis with respect to present-day and future climate scenarios using habitat temperature data to construct species distribution models (SDMs). To integrate the physiological response of the dispersive phase, we determined the thermal envelope of larval development to assess their performance in present-day and future thermal regimes and the potential for success of A. amurensis in poleward latitudes. The SDM indicated that the thermal 'niche' of the adult stage correlates with a 0-17 °C and 1-22.5 °C range, in winter and summer, respectively. As the ocean warms, the range of A. amurensis in Australia will contract, while more southern latitudes will have conditions favourable for range expansion. Successful fertilization occurred from 3 to 23.8 °C. By day 12, development to the early larval stage was successful from 5.5 to 18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5-19.2 °C with a lower and upper critical limit of 2.6 and 20.3 °C, respectively. Our data predict that A. amurensis faces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica.


Assuntos
Distribuição Animal , Asterias , Mudança Climática , Animais , Regiões Antárticas , Regiões Árticas , Austrália , Espécies Introduzidas , Modelos Teóricos , Oceanos e Mares
13.
Behav Neurosci ; 130(1): 19-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26795581

RESUMO

The role of opiate systems has been extensively studied in relation to learning and memory. Naloxone (Nx), an opiate antagonist, was administrated in concurrent (Experiment 1) and sequential (Experiment 2) flavor aversion learning (FAL) tasks. The outcomes demonstrate that Nx impairs the acquisition of concurrent but not sequential FAL. In the concurrent learning (7 trials), both control (vehicle) and Nx2 (treated with Nx only on the first 2 days) groups learned the task. Furthermore, these 2 groups retained the learning in a discrimination test without drug administration (Day 8) but failed a reversal test (Day 9). In contrast, the Nx group (7 trials with Nx) showed no concurrent learning but correctly performed the discrimination test (Day 8) and, critically, the reversal test. These results suggest that Nx blocks concurrent (implicit) learning in these experiments but induces animals to resort to new strategies that are flexible, a characteristic of explicit learning.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Paladar/efeitos dos fármacos , Análise de Variância , Animais , Ratos , Ratos Wistar , Solução Salina Hipertônica/farmacologia , Fatores de Tempo
14.
Biodivers Data J ; (3): e7062, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696769

RESUMO

BACKGROUND: The Register of Antarctic Marine Species (RAMS, De Broyer et al. 2015) is the regional component of the World Register of Marine Species (WoRMS Editorial Board 2015) in the Southern Ocean. It has been operating for the last ten years, with a special effort devoted towards its completion after the International Polar Year (IPY) in 2007-2008, in the framework of the Census of Antarctic Marine Life (CAML, 2005 - 2010). Its objective is to offer free and open access to a complete register of all known species living in the Southern Ocean, building a workbench of the present taxonomic knowledge for that region. The Antarctic zone defined by this dynamic and community-based tool has been investigated with a particular interest. The Sub-Antarctic zone was a secondary objective during the establishment of the RAMS and is still lacking the impulse of the scientific community for some taxa. NEW INFORMATION: In the present study, more than 13,000 occurrences records of Asteroidea (Echinodermata) have been compiled within the RAMS area of interest and checked against the RAMS species list of sea stars, using WoRMS Taxon Match tool. Few mismatches (basionym mistakes : i.e. original name misspelled or incorrect) were found within the existing list and 97 unregistered species are actually occurring within the RAMS boundaries. After this update, the number of Asteroidea species was increased by around 50%, now reaching 295 accepted species.

15.
PLoS One ; 10(10): e0140078, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451918

RESUMO

Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to increase our knowledge on the ecophysiology of this species, providing new insights on the role of food availability and temperature on its life cycle and reproduction strategy.


Assuntos
Metabolismo Energético , Modelos Biológicos , Estrelas-do-Mar/fisiologia , Estruturas Animais/fisiologia , Animais , Regiões Antárticas , Ecossistema , Larva/crescimento & desenvolvimento , Larva/fisiologia , Estágios do Ciclo de Vida , Dinâmica Populacional , Reprodução , Estrelas-do-Mar/crescimento & desenvolvimento , Temperatura
16.
Zookeys ; (524): 137-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26478709

RESUMO

The Register of Antarctic Marine Species (RAMS) is a marine species database that manages an authoritative taxonomic list of species occurring in the Southern Ocean. RAMS links with several other initiatives managing biogeographic or genomics information. The current paper aims to briefly present RAMS and provides an updated snapshot of its contents, in the form of a DarwinCore checklist (available through http://ipt.biodiversity.aq/resource.do?r=rams) and illustrative barplots. Moreover, this article presents a ten year appraisal (since the creation of RAMS). This appraisal first focuses on RAMS bibliometrics. We observed that RAMS was cited (Google Scholar) in 50 distinct publications among which 32 were peer-reviewed in 18 different journals. Three journals (Antarctic Science, Polar Biology, ZooKeys) represent almost 40% of these peer-review publications. The second appraisal focuses on the evolution of new RAMS records. We observed an important decrease in data additions since 2011. As a case study, we focused on an original dataset for a specific group (Asteroidea, Echinodermata). It appears that around one hundred species of asteroids are lacking in RAMS despite the relatively high availability of these data. This suggests that the users' community (or collaborative projects such as AquaRES) could be helpful in order to maintain the RAMS database over the long term.

17.
Acta Neurobiol Exp (Wars) ; 75(4): 381-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26994417

RESUMO

The amygdala is considered a crucial brain nucleus in different modalities of aversive conditioning, including flavor aversion learning (FAL). The importance attributed to the amygdala and its subnuclei has frequently depended on the different stimuli and procedures used in FAL tasks. In this study, FAL was impaired only in animals that had lesions in the central nucleus of the amygdala (CeA) area and also had their olfactory bulbs removed. However, this task was learned by neurologically intact animals, bulbectomized animals, and rats with lesions exclusively centered in the CeA area alone. These results suggest that the CeA area may be relevant in gustatory-gut associative learning but not in FAL, in which the olfactory system may counteract the deficit produced in taste-visceral convergence.


Assuntos
Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/lesões , Condicionamento Clássico/fisiologia , Bulbo Olfatório/fisiopatologia , Paladar/fisiologia , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico , Condicionamento Psicológico/fisiologia , Masculino , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...