Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34793117

RESUMO

Patch-type drug delivery has garnered increased attention as an attractive alternative to the existing drug delivery techniques. Thus far, needle phobia and efficient drug delivery remain huge challenges. To address the issue of needle phobia and enhance drug delivery, we developed a needle-free and self-adhesive microcup patch that can be loaded with an ultrathin salmon DNA (SDNA) drug carrier film. This physically integrated system can facilitate efficient skin penetration of drugs loaded into the microcup patch. The system consists of three main components, namely, a cup that acts as a drug reservoir, an adhesive system that attaches the patch to the skin, and physical stimulants that can be used to increase the efficiency of drug delivery. In addition, an ultrathin SDNA/drug film allows the retention of the drug in the cup and its efficient release by dissolution in the presence of moisture. This latter feature has been validated using gelatin as a skin mimic. The cup design itself has been validated by comparing its deformation and displacement with those of a cylindrical structure. Integration of the self-adhesive microcup patch with both ultrasonic waves and an electric current allows the model drug to penetrate the stratum corneum of the skin barrier and the whole epidermis, thereby enhancing transdermal drug delivery and reducing skin irritation. This system can be used as a wearable biomedical device for efficient transdermal and needle-free drug delivery.

3.
ACS Appl Mater Interfaces ; 13(29): 35069-35078, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34282875

RESUMO

Many conventional micropatterning and nanopatterning techniques employ toxic chemicals, rendering them nonbiocompatible and unsuited for biodevice production. Herein the formation of water bridges on the surface of hyaluronic acid (HA) films is exploited to develop a transfer-based nanopatterning method applicable to diverse structures and materials. The HA film surface, made deformable via water bridge generation, is brought into contact with a functional material and subjected to thermal treatment, which results in film shrinkage, allowing a robust pattern transfer. The proposed biocompatible method, which avoids the use of extra chemicals, enables the transfer of nanoscale, microscale, and thin-film structures as well as functional materials such as metals and metal oxides. A nanopatterned HA film is transferred onto a moisture-containing contact lens to fabricate smart contact lenses with unique optical characteristics of rationally designed optical nanopatterns. These lenses demonstrated binocular parallax-induced stereoscopy via nanoline array polarization and acted as cutoff filters, with nanodot arrays, capable of treating Irlen syndrome.


Assuntos
Materiais Biocompatíveis/química , Lentes de Contato , Ácido Hialurônico/química , Impressão , Materiais Inteligentes/química , Água/química , Percepção de Profundidade , Nanoestruturas/química , Poliuretanos/química , Prata/química
4.
Adv Healthc Mater ; 10(9): e2001461, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694309

RESUMO

Conventional flexible pressure sensors are not suitable for high-pressure applications due to their low saturation pressure. In this study, an ultra-wide range pressure sensor is designed based on the optimized microstructure of the polyimide/carbon nanotubes (PI/CNT) nanocomposite film. The sensing range of the pressure sensor is expanded by adopting polyimide (PI) with a high elastic modulus as a matrix material and its sensitivity is improved through functional sensing film with tip-flattened microdome arrays. As a result, the pressure sensor can measure a wide pressure range (≈ 0-3000 kPa) and possesses the sensitivity of ≈ 5.66 × 10-3 -0.23 × 10-3 kPa-1 with high reliability and durability up to 1000 cycles. The proposed sensor is integrated into the hand and foot pressure monitoring systems for workout monitoring. The representative values of the pressure distribution in the hands and feet during the powerlifting are acquired and analyzed through Pearson's correlation coefficient (PCC). The analyzed results suggest that the pressure sensor can provide useful real-time information for healthcare and sports performance monitoring.


Assuntos
Nanocompostos , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Pressão , Reprodutibilidade dos Testes
5.
ACS Nano ; 15(1): 503-514, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33439612

RESUMO

The fabrication of large-area and flexible nanostructures currently presents various challenges related to the special requirements for 3D multilayer nanostructures, ultrasmall nanogaps, and size-controlled nanomeshes. To overcome these rigorous challenges, a simple method for fabricating wafer-scale, ultrasmall nanogaps on a flexible substrate using a temperature above the glass transition temperature (Tg) of the substrate and by layer-by-layer nanoimprinting is proposed here. The size of the nanogaps can be easily controlled by adjusting the pressure, heating time, and heating temperature. In addition, 3D multilayer nanostructures and nanocomposites with 2, 3, 5, 7, and 20 layers were fabricated using this method. The fabricated nanogaps with sizes ranging from approximately 1 to 40 nm were observed via high-resolution transmission electron microscopy (HRTEM). The multilayered nanostructures were evaluated using focused ion beam (FIB) technology. Compared with conventional methods, our method could not only easily control the size of the nanogaps on the flexible large-area substrate but could also achieve fast, simple, and cost-effective fabrication of 3D multilayer nanostructures and nanocomposites without any post-treatment. Moreover, a transparent electrode and nanoheater were fabricated and evaluated. Finally, surface-enhanced Raman scattering substrates with different nanogaps were evaluated using rhodamine 6G. In conclusion, it is believed that the proposed method can solve the problems related to the high requirements of nanofabrication and can be applied in the detection of small molecules and for manufacturing flexible electronics and soft actuators.

6.
ACS Appl Mater Interfaces ; 13(2): 3358-3368, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33347263

RESUMO

A novel method for fabricating shape-controlled and well-arrayed heterogeneous nanostructures by altering the melting point of the metal thin film at the nanoscale is proposed. Silver nanofilms (AgNFs) are transformed into silver nanoislands (AgNIs), silver nanoparticles (AgNPs), and silver nanogaps (AgNGs) that are well-ordered and repositioned inside the gold nanoholes (AuNHs) depending on the diameter of the AuNHs, the thickness of the AgNF, and the heating temperature (120-200 °C). This method demonstrates the ability to fabricate uniform, stable, and unique structures with a fast, simple, and mass-producible process. For demonstrating the diverse applicability of the developed structures, high-density AgNGs inside the AuNHs are utilized as surface-enhanced Raman spectroscopy (SERS) substrates. These AgNGs-based SERS substrates exhibit a performance enhancement, which is 1.06 × 106 times greater than that of a metal film, with a relative standard deviation of 19.8%. The developed AgNP/AgNI structures are also used as nonreproducible anti-counterfeiting signs, and the anti-counterfeiting/readout system is demonstrated via image processing. Therefore, our method could play a vital role in the nanofabrication of high-demand nanostructures.

7.
ACS Sens ; 5(8): 2367-2377, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32321242

RESUMO

Herein, a nanowelding technique is adopted to fabricate three-dimensional layer-by-layer Pd-containing nanocomposite structures with special properties. Nanowires fabricated from noble metals (Pd, Pt, Au, and Ag) were used to prepare Pd-Pd nanostructures and Pd-Au, Pd-Pt, Pd-Ag, and Pd-Pt-Au nanocomposite structures by controlling the welding temperature. The recrystallization behavior of the welded composite materials was observed and analyzed. In addition, their excellent mechanical and electrical properties were confirmed by performing 10,000 bending test cycles and measuring the resistances. Finally, flexible and wearable nanoheaters and gas sensors were fabricated using our proposed method. In comparison with conventional techniques, our proposed method can not only easily achieve sensors with a large surface area and flexibility but also improve their performance through the addition of catalyst metals. A gas sensor fabricated using the Pd-Au nanocomposites demonstrated 3.9-fold and 1.1-fold faster H2 recovery and response, respectively, than a pure Pd-Pd gas sensor device. Moreover, the Pd-Ag nanocomposite exhibited a high sensitivity of 5.5% (better than that of other fabricated gas sensors) for 1.6% H2 concentration. Therefore, we believe that the fabricated nanocomposites appear promising for wide applications in wearable gas sensors, flexible optical devices, and flexible catalytic devices.


Assuntos
Nanocompostos , Nanofios , Catálise , Hidrogênio
9.
ACS Appl Mater Interfaces ; 12(11): 13338-13347, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32073247

RESUMO

Despite various advantages and usefulness of semiconductor metal oxide gas sensors, low selectivity and humidity interference have limited their practical applications. In order to resolve these issues, we propose a new concept of a selective gas filtering structure that increases the gas selectivity and decreases the moisture interference of metal oxide gas sensors by coating metal organic frameworks (MOFs) on a microporous elastomer scaffold. Cu(BTC) with an excellent selective adsorption capacity for carbon monoxide (CO) compared to hydrogen (H2) and MIL-160 with an excellent moisture adsorption capacity were uniformly coated on the microporous polydimethylsiloxane (PDMS) structure through a squeeze coating method, resulting in a high content of MOFs with a large effective surface area. A Cu(BTC)-coated microporous PDMS filter showed an excellent adsorption efficiency (62.4%) for CO, thereby dramatically improving the selectivity of H2/CO by up to 2.6 times. In addition, an MIL-160 coated microporous PDMS filter showed a high moisture adsorption efficiency (76.2%).

10.
ACS Nano ; 14(2): 2191-2201, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31990171

RESUMO

The growing interest in wearable devices has drawn increased attention to smart textiles, and various transfer methods have therefore been introduced to realize the desired functions using textiles as substrates. However, the existing transfer techniques are not suited for the production of sophisticated nanoscale patterns on textiles, as textile roughness and difficulty of precise pattern size control hinder miniaturization, deteriorate device performance, and complicate the use of optical phenomena such as surface plasmon resonance. To address these limitations, we have developed a method based on simple dissolution of a water-soluble nanopatterned polymer film for the facile transfer of nanostructures of on-film-deposited functional materials onto textile substrates. The above method tolerates a variety of functional materials, e.g., metals and SiO2, and nano/microscale structures, e.g., nanoscale lines, dots, holes, and mesh patterns with a minimum pattern width of 50 nm. The proposed technique is employed to fabricate a palladium nanoscale line array (utilized as a highly sensitive and selective hydrogen sensor) and is shown to be suitable for the production of security patterns on textiles, as it allows the printing of complex nanostructure patterns with electrical and optical functionalities.

11.
ACS Appl Mater Interfaces ; 12(9): 10908-10917, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31877014

RESUMO

A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R2 > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.

12.
ACS Appl Mater Interfaces ; 12(1): 1698-1706, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825585

RESUMO

Wearable pressure sensors have been attracting great attention for a variety of practical applications, including electronic skin, smart textiles, and healthcare devices. However, it is still challenging to realize wearable pressure sensors with sufficient sensitivity and low hysteresis under small mechanical stimuli. Herein, we introduce simple, cost-effective, and sensitive capacitive pressure sensor based on porous Ecoflex-multiwalled carbon nanotube composite (PEMC) structures, which leads to enhancing the sensitivity (6.42 and 1.72 kPa-1 in a range of 0-2 and 2-10 kPa, respectively) due to a synergetic effect of the porous elastomer and percolation of carbon nanotube fillers. The PEMC structure shows excellent mechanical deformability and compliance for an effective integration with practical wearable devices. Also, the PEMC-based pressure sensor shows not only the long-term stability, low-hysteresis, and fast response under dynamic loading but also the high robustness against temperature and humidity changes. Finally, we demonstrate a prosthetic robot finger integrated with a PEMC-based pressure sensor and an actuator as well as a healthcare wristband capable of continuously monitoring blood pressure and heart rate.


Assuntos
Técnicas Biossensoriais , Determinação da Pressão Arterial/instrumentação , Monitorização Fisiológica , Nanotubos de Carbono/química , Elastômeros/química , Humanos , Fenômenos Mecânicos , Porosidade , Têxteis , Dispositivos Eletrônicos Vestíveis
13.
Nanotechnology ; 30(45): 455707, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31349233

RESUMO

The increasing demand for smart fabrics has inspired extensive research in the field of nanomaterial-based wearable heaters. However, existing stretchable heaters employ polymer substrates, and hence require additional substrate-fabric bonding that can result in high thermal contact resistance. Moreover, currently used stretchable fabric heaters suffer from high sheet resistance and require complex fabrication processes. In addition, conventional fabrication methods do not allow for patternability, thus hindering the fabrication of wearable heaters with diverse designs. Herein, we propose an improved spray coating method well suited for the preparation of patternable heaters on commercial fabrics, combining the structural stability of carbon nanotubes with the high electrical conductivity of Ag nanowires to fabricate a stretchable fabric heater with excellent mechanical (stretchability ≈ 50%) and electrical (sheet resistance ≈ 22 Ω sq-1) properties. The fabricated wearable heater reaches typical operating temperatures of 35 °C-55 °C at a low driving voltage of 3-5 V with a proper surface power density of 26.6-72.2 [Formula: see text] (heater area: [Formula: see text]) and maintains a stable heating temperature for more than 30 h. This heater shows a stable performance even when folded or rolled, thus being well suited for the practical wearable applications.

14.
Nanoscale ; 11(23): 11128-11137, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31042252

RESUMO

Many recently developed nanotransfer printing techniques have received much attention because of their simplicity and low cost. In addition, such techniques are suitable for fabricating nano/microscale sensors, optical elements, and electrical devices. However, conventional nanotransfer printing methods are time-consuming, cannot be easily used over large areas or with several different materials, and are not suitable for repeatedly transferring various materials onto the same substrate or a curved surface. Herein, a new nanotransfer printing method is introduced based on the oxidation of various metals and the formation of covalent bonds between spin- and spray-coatable adhesives and the chosen metal at low temperatures. These strong covalent bonds allow the fast transfer of the deposited materials from a polymer stamp without additional processing. A major advantage of this process is that it is metal-independent; nanowires of various metals are successfully transferred from the polymer stamp because strong covalent bonds form instantaneously between the metal and an adhesive-coated substrate. Moreover, this nanotransfer process can be used repeatedly to fabricate large-scale color filters from smaller areas of nanowires, regardless of the metal type and nanostructure orientation. Furthermore, plasmonic color filters composed of nanohole arrays can be obtained on both flat and curved surfaces.

15.
Brain Res ; 1529: 113-24, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23831521

RESUMO

Accumulation of amyloid-ß (Aß) is thought to be a central pathology in the brain of patients with Alzheimer's disease (AD). Neprilysin (NEP), a plasma membrane glycoprotein of the neutral zinc metalloendopeptidase family, is known as a major Aß-degrading enzyme in the brain. The level of NEP is reduced in the brains of patients with AD; therefore, NEP is under intense investigation as a potential therapeutic source for degradation of deposited Aß in AD. Previous studies have utilized viral vectors expressing NEP for reduction of Aß deposition in the brain. However, viral vectors have disadvantages regarding difficulty in control of insert size, expression desired (short- or long-term), and target cell type. Here, in order to overcome these disadvantages, we produced recombinant soluble NEP from insect cells using an NEP expression vector, which was administered by intracerebral injection into AD mice, resulting in significantly reduced accumulation of Aß. In addition, AD mice treated with NEP showed improved behavioral performance on the water maze test. These data support a role of recombinant soluble NEP in improving memory impairment by regulation of Aß deposition and suggest the possibility that approaches using protein therapy might have potential for development of alternative therapies for treatment of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antipsicóticos/uso terapêutico , Transtornos da Memória/metabolismo , Transtornos da Memória/terapia , Neprilisina/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Hipocampo/citologia , Humanos , Marcação In Situ das Extremidades Cortadas , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Presenilina-1/genética , Proteínas Recombinantes/uso terapêutico
16.
Mol Ther ; 20(4): 829-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252450

RESUMO

Noninvasive intranasal drug administration has been noted to allow direct delivery of drugs to the brain. In the present study, the therapeutic efficacy of intranasal small interfering RNA (siRNA) delivery was investigated in the postischemic rat brain. Fluorescein isothiocyanate (FITC)-labeled control siRNA was delivered intranasally in normal adult rats using e-PAM-R, a biodegradable PAMAM dendrimer, as gene carrier. Florescence-tagged siRNA was found in the cytoplasm and processes of neurons and of glial cells in many brain regions, including the hypothalamus, amygdala, cerebral cortex, and striatum, in 1 hour after infusion, and the FITC-fluorescence was continuously detected for at least 12 hours. When siRNA for high mobility group box 1 (HMGB1), which functions as an endogenous danger molecule and aggravates inflammation, was delivered intranasally, the target gene was significantly depleted in many brain regions, including the prefrontal cortex and striatum. More importantly, intranasal delivery of HMGB1 siRNA markedly suppressed infarct volume in the postischemic rat brain (maximal reduction to 42.8 ± 5.6% at 48 hours after 60 minutes middle cerebral artery occlusion (MCAO)) and this protective effect was manifested by recoveries from neurological and behavioral deficits. These results indicate that the intranasal delivery of HMGB1 siRNA offers an efficient means of gene knockdown-mediated therapy in the ischemic brain.


Assuntos
Isquemia Encefálica/prevenção & controle , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Administração Intranasal , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Immunoblotting , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...