Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 368: 130782, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34392121

RESUMO

In this study, the aerial parts and bulbs of nine Allium species were investigated for their functional phytochemical profile, in vitro antioxidant activities, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, and tyrosinase inhibitory properties. Phenolics, alkaloids, glucosinolates and other sulfur-containing compounds were distinctively profiled in the different species. Maceration in methanol allowed recovering the highest cumulative phenolic content in A. scabrifolium (42.31 mg/g), followed by A. goekyigiti (33.15 mg/g) and A. atroviolaceum (28.35 mg/g). The aerial parts of all Allium species showed high in vitro antioxidant activity whereas methanolic extract of A. cappadocicum bulb showed the highest inhibition against AChE (2.44 mg galantamine equivalent/g) and the water extracts of A. isauricum aerial part were the best BChE inhibitors (4.31 mg galantamine equivalent/g). Bulbs were the richer source of oligosaccharides, and in vitro digestion determined an increase of oligosaccharides bioaccessibility. A promising nutraceutical potential could be highlighted in our understudied Allium species.


Assuntos
Allium , Antioxidantes , Acetilcolinesterase , Antioxidantes/farmacologia , Butirilcolinesterase , Inibidores Enzimáticos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
2.
Ann Clin Biochem ; : 45632211053998, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34719238

RESUMO

BACKGROUND: Pancreatic cyst fluid analysis plays an important role in distinguishing between mucinous and non-mucinous cyst lesions. We aimed to compare the diagnostic performances of cyst fluid carcinoembryonic antigen (CEA), CA 19-9, and glucose in differentiating mucinous from non-mucinous neoplastic pancreatic cystic lesions (PCLs) and determine the best cut-off levels. METHODS: Patients' data were evaluated retrospectively. 102 patients' PCLs were grouped as non-neoplastic (n = 25), non-mucinous neoplastic (n = 20), mucinous neoplastic (n = 47) and pancreatic adenocarcinomas with cystic degeneration (n = 10); and CEA, CA 19-9, and glucose levels were compared. Receiver-operating characteristic analysis was performed, and the ideal cut-off values were determined. RESULTS: Cyst fluid CEA and CA 19-9, levels were significantly higher (P < 0.001, P < 0.001, respectively) and glucose levels were significantly lower (P = 0.001) in mucinous than in non-mucinous neoplastic PCLs. Area under curve with 95% confidence interval of CEA, glucose and CEA and glucose test combination was 0.939 (95% CI = 0.885-0.993, P = 0.001), 0.809 (95% CI = 0.695-0.924, P < 0.001) and 0.937 (95% CI = 0.879-0.995), respectively. CEA cut-offs to rule-in and rule-out mucinous neoplastic were 135.1 ng/mL (sensitivity = 62%, specificity = 94.7%) and 6.12 ng/mL (sensitivity = 94.1%, specificity = 80.4%), respectively. Glucose cut-off of 2.8 mmol/L was chosen both to rule-in and rule-out mucinous neoplastic PCLs (sensitivity = 78%, specificity = 80%). Co-analysis of CEA and glucose to distinguish mucinous from non-mucinous neoplastic PCLs had sensitivity = 87.8%, specificity = 93.3%, and diagnostic accuracy = 89.3%. CONCLUSIONS: We concluded that co-analysis of cyst fluid CEA (cut-off = 135.1 ng/mL) and glucose (cut-off = 2.8 mmol/L) at novel cut-offs had the best testing performance to rule-in mucinous neoplastic PCLs. To rule-out mucinous PCLs co-analysis of CEA (cut-off = 6.12 ng/mL) and glucose (cut-off = 2.8 mmol/L) added value to prediction.

3.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684872

RESUMO

Recent studies in the agronomic field indicate that the exogenous application of polyphenols can provide tolerance against various stresses in plants. However, the molecular processes underlying stress mitigation remain unclear, and little is known about the impact of exogenously applied phenolics, especially in combination with salinity. In this work, the impacts of exogenously applied chlorogenic acid (CA), hesperidin (HES), and their combination (HES + CA) have been investigated in lettuce (Lactuca sativa L.) through untargeted metabolomics to evaluate mitigation effects against salinity. Growth parameters, physiological measurements, leaf relative water content, and osmotic potential as well as gas exchange parameters were also measured. As expected, salinity produced a significant decline in the physiological and biochemical parameters of lettuce. However, the treatments with exogenous phenolics, particularly HES and HES + CA, allowed lettuce to cope with salt stress condition. Interestingly, the treatments triggered a broad metabolic reprogramming that involved secondary metabolism and small molecules such as electron carriers, enzyme cofactors, and vitamins. Under salinity conditions, CA and HES + CA distinctively elicited secondary metabolism, nitrogen-containing compounds, osmoprotectants, and polyamines.

4.
Plants (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685855

RESUMO

The widespread genus Cirsium Mill. (Asteraceae) is renowned in traditional medicine. In the present study, an innovative biochemometric-assisted metabolite profiling of the flower heads, aerial parts and roots of Cirsium appendiculatum Griseb. (Balkan thistle) in relation to their antioxidant and enzyme inhibitory potential was developed. The workflow combines ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) with partial least-square analysis to discriminate the herbal extracts and identify the most prominent biological activities. The annotation and dereplication of 61 secondary metabolites were evidenced, including 15 carboxylic (including hydroxybenzoic and hydroxycinnamic) acids and their glycosides, 11 acylquinic acids, 26 flavonoids and 9 fatty acids. All compounds were reported for the first time in the studied species. The root extract revealed the highest cupric and ferric reducing power (618.36 ± 5.17 mg TE/g and 269.89 ± 8.50 mg TE/g, respectively) and antioxidant potential in phosphomolybdenum (3.36 ± 0.15 mmol TE/g) as well as the most prominent enzyme inhibitory potential on α-glucosidase (0.72 ± 0.07 mmol ACAE/g), acetylcholinesterase (4.93 ± 0.25 mg GALAE/g) and butyrylcholinesterase (3.80 ± 0.26 mg GALAE/g). Nevertheless, the flower heads were differentiated by their higher metal chelating activity (32.53 ± 3.51 mg EDTAE/g) and total flavonoid content (46.59 ± 0.89 mgRE/g). The partial least-square discriminant and heat-map analysis highlighted the root extract as the most active and a promising source of bioactive compounds for the therapeutic industry.

5.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573021

RESUMO

Epilobium hirsutum is extensively used as a traditional remedy in folk medicine, especially against prostate inflammation. Therefore, we evaluated the chemical profiles and biopharmaceutical potentials of different extracts of E. hirsutum aerial parts and roots. Metabolomic, antioxidant, and enzyme inhibitory profiles were investigated. Human prostate cancer PC3 cells were exposed to the extracts to evaluate antiproliferative effects. Gene expression and bioinformatics analyses were performed to investigate anti-inflammatory mechanisms. Oenothein B and myricetin were prominent compounds in the extracts. In scavenging/reducing assays, the methanol, infusion, and methanol/water extracts exhibited similar activities. We also observed the reduction of PC3 viability occurring following exposure to methanol and methanol/water extracts. According to bioinformatics analysis, myricetin was predicted to interact with COX-2 and TNFα. The interaction between TNFα and oxo-dihydroxy-octadecenoic acid was predicted as well. Intriguingly, the gene expression of COX-2 and TNFα was reduced in PC3 cells after exposure to methanol and methanol/water extracts. These effects were paralleled by the decreased gene expression of IL-8 and NFkB and the inhibition of PGE2 release. Therefore, the present findings suggest the potential use of E. hirsutum for the management of the burden of inflammation and oxidative stress occurring in lower urinary tract diseases, including prostatitis.

6.
J Obstet Gynaecol ; : 1-5, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34565265

RESUMO

Systemic lupus erythematosus (SLE) is associated with a higher risk of complications in pregnancy. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been evaluated in numerous inflammatory diseases. We evaluated the possible role of these markers in SLE pregnancies. Forty-six pregnant patients with an already established diagnosis of SLE were included in the study. Complete blood counts were obtained upon admission for delivery. Seven patients were diagnosed with a flare and managed with multiple medications, whereas rest of the patients were not on any treatment or managed with monotherapy. NLR and PLR values were also evaluated between two groups and no statistically significant difference was found (p=.44 and p=.80, respectively). This study is the first to evaluate the possible role of NLR and PLR in pregnant SLE patients in the literature. Further studies are warranted for an elaborate evaluation of NLR and PLR in lupus pregnancies.Impact StatementWhat is already known on this subject? Pregnancy in the setting of SLE is associated with a higher risk of complications. Active disease increases the risk of adverse outcomes further.What the results of this study add? This study is the first to evaluate NLR and PLR in pregnancies complicated by SLE. No significant association between the course of the disease in pregnancy and NLR/PLR was documented.What the implications are of these findings for clinical practice and/or further research? Further studies on the markers to predict prognosis of SLE in pregnancy are required to improve the maternal and neonatal outcomes in this exclusive group of high-risk patients.

7.
Chem Biodivers ; 18(10): e2100371, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390173

RESUMO

Spermacoce verticillata (L.) G. Mey. is commonly used in the folk medicine by various cultures to manage common diseases. Herein, the chemical and biological profiles of S. verticillata were studied in order to provide a comprehensive characterization of bioactive compounds and also to highlight the therapeutic properties. The in vitro antioxidant activity using free-radical scavenging, phosphomolybdenum, ferrous-ion chelating and reducing power assays, and the inhibitory activity against key enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase of S. verticillata extracts (dichloromethane, ethyl acetate, methanol and water) were investigated. The highest total phenolic and flavonoid content were observed in the methanolic and aqueous extracts. Exhaustive 2DNMR investigation has revealed the presence of rutin, ursolic and oleanoic acids. The methanolic extract, followed by aqueous extract have showed remarkable free radical quenching and reducing ability, while the dichloromethane extract was the best source of metal chelators. The tested extracts showed notable inhibitory activity against cholinesterases (AChE: 1.63-4.99 mg GALAE/g extract and BChE: 12.40-15.48 mg GALAE/g extract) and tyrosinase (60.85-159.64 mg KAE/g extract). No inhibitory activity was displayed by ethyl acetate and aqueous extracts against BChE and tyrosinase, respectively. All the tested extracts showed modest α-amylase inhibitory activity, while only the ethyl acetate and aqueous extracts were potent against α-glycosidase. This study further validates the use of S. verticillata in the traditional medicine, while advocating for further investigation for phytomedicine development.

8.
Chem Biodivers ; 18(10): e2100356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34398524

RESUMO

The aim of the present study was to quantify selected phenolic compounds, determine antioxidant activity and enzyme inhibitory effects of the aerial parts of Alkanna trichophylla Hub.-Mor. (A. trichophylla) and Convolvulus galaticus Rost.ex Choisy (C. galaticus) extracts prepared by homogenizer-assisted extraction (HAE), maceration (MAC) and infusion techniques. This is the first time such study has been designed to validate the phytochemical composition and bioactivity of these plants. Multivariate analysis was conducted on collected data. Rutin and caffeoylquinic acid derivatives were the most significant compounds in A. trichophylla and C. galaticus, respectively. The highest antioxidant activity of A. trichophylla was mostly exhibited by HAE/methanolic extracts as determined by DPPH, ABTS, FRAP (51.39, 112.70 and 145.73 mg TE/g, respectively) and phosphomolybdenum (2.05 mmol TE/g) assays. However, significant antioxidant activities varied within the extracts of C. galaticus. HAE/methanolic extract of A. trichophylla significantly depressed AChE (2.70 mg GALAE/g), BChE (5.53 mg GALAE/g) and tyrosinase (26.34 mg KAE/g) activities and that of C. galaticus inhibited AChE (2.04 mg GALAE/g), tyrosinase (31.25 mg KAE/g) and α-amylase (0.53 mmol ACAE/g) activities significantly. We concluded that HAE was the most efficient extraction technique as high yield of compounds and promising bioactivities were recorded from extracts prepared. Multivariate analysis showed that types of solvents influenced recovery of compounds and biological activities. This research study can be used as one methodological starting point for further investigation on these plants as all results are clearly promising and open the door to further research challenges such as cytotoxicity evaluation, molecular docking analysis, and more screening of pharmacological actions.

9.
Food Chem Toxicol ; 156: 112446, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339749

RESUMO

The genus Acacia (Family Leguminosae) is composed of several medicinal plants used for treating miscellaneous diseases. Amid the important members of this genus, A. nilotica and A. ataxacantha are widely employed for their tremendous healing properties. Hence, this present work aimed to determine the total phenolic and flavonoid contents and investigate the antioxidant, antiproliferative, anti-enzyme and antimicrobial potentials of methanolic and water extracts of leaves and stem bark of A. nilotica and A. ataxacantha obtained by maceration and ultrasonication. The total phenolic and flavonoid contents were obtained in the range of 33.35-116.60 mg GAE/g and 0.26-49.90 mg RE/g, respectively, with the methanolic leaf extracts of both species showing the highest contents. Moreover, the methanolic extracts were observed to display higher antioxidant potentials in almost all antioxidant assays performed compared to the water extracts (ABTS: 52.66-943.81 mg TE/g, DPPH: 8.51-493.90 mg TE/g, CUPRAC: 106.39-1193.75 mg TE/g; FRAP: 31.38-416.21 mg TE/g, and phosphomolybdenum: 0.90-4.17 mM TE/g). However, the water extracts were seen to be better metal chelators than the methanolic extracts (8.47-36.85 mg EDTAE/g). Additionally, all extracts were found to exhibit anti-tyrosinase (30.79-74.80 mg KAE/g) and anti-amylase (0.10-1.10 mM ACAE/g) properties. With the exception of a few extracts, glucosidase and acetylcholinesterase inhibitions (1.69-2.12 mg ACAE/g and 0.42-2.61 mg GALAE/g, respectively) were also demonstrated. While the methanolic extracts of both species showed antimicrobial potency against all the 18 tested microorganisms (gram positive, gram negative, and fungi), the water extracts were effective only against the gram positive bacteria. The extracts were also found to exhibit antiproliferative effects on SH-SY5Y human neuroblastoma cells, with the methanolic extracts showing higher cytotoxic potential than the water extracts. Therefore, this study showed these species to be good sources of antioxidants, enzyme inhibitors, antimicrobials and antiproliferative agents, which could be of great interest for their applications as natural bioactive ingredients in the development of pharmaceuticals and nutraceuticals.

10.
Plants (Basel) ; 10(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371660

RESUMO

The quest for sustainable strategies aimed at increasing the bioactive properties of plant-based foods has grown quickly. In this work, we investigated the impact of exogenously applied phenolics, i.e., chlorogenic acid (CGA), hesperidin (HES), and their combinations (HES + CGA), on Lactuca sativa L. grown under normal- and mild-salinity conditions. To this aim, the phenolic profile, antioxidant properties, and enzyme inhibitory activity were determined. The untargeted metabolomics profiling revealed that lettuce treated with CGA under non-stressed conditions exhibited the highest total phenolic content (35.98 mg Eq./g). Lettuce samples grown under salt stress showed lower phenolic contents, except for lettuce treated with HES or HES + CGA, when comparing the same treatment between the two conditions. Furthermore, the antioxidant capacity was investigated through DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonate)), and FRAP (ferric reducing antioxidant power) assays, coupled with metal-chelating activity and phosphomolybdenum capacity. An exciting increase in radical scavenging capacity was observed in lettuce treated with exogenous phenolics, in both stress and non-stress conditions. The inhibitory activity of the samples was evaluated against target health-related enzymes, namely cholinesterases (acetylcholinesterase; AChE; butyryl cholinesterase; BChE), tyrosinase, α-amylase, and α-glucosidase. Lettuce treated with HES + CGA under non-stress conditions exhibited the strongest inhibition against AChE and BChE, while the same treatment under salinity conditions resulted in the highest inhibition capacity against α-amylase. Additionally, CGA under non-stress conditions exhibited the best inhibitory effect against tyrosinase. All the functional traits investigated were significantly modulated by exogenous phenolics, salinity, and their combination. In more detail, flavonoids, lignans, and stilbenes were the most affected phenolics, whereas glycosidase enzymes and tyrosinase activity were the most affected among enzyme assays. In conclusion, the exogenous application of phenolics to lettuce represents an effective and green strategy to effectively modulate the phenolic profile, antioxidant activity, and enzyme inhibitory effects in lettuce, deserving future application to produce functional plant-based foods in a sustainable way.

11.
Food Chem Toxicol ; 154: 112330, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116105

RESUMO

Astragalus L. (Fabaceae) is an important genus with numerous species having various traditional medicinal uses making them of interest for scientific investigations to ascertain their therapeutic benefits. In the present study, the quantitative polyphenolic profiles of methanolic extracts from different parts (leaves, flowers, and roots) of two endemic Astragalus species growing in Turkey, i.e. A. campylosema Boiss. and A. hirsutus Vahl were determined, along with their antioxidant and enzyme inhibitory properties. A. campylosema and A. hirsutus extracts showed varying total phenolic (25.80-40.60 and18.59-29.46 mg GAE/g, respectively) and total flavonoid (11.21-105.91 and 16.06-131.91 mg RE/g, respectively) contents. HPLC-MS/MS revealed rutin to be the predominant phenolic compound in all the extracts of A. campylosema and leaf extract of A. hirsutus (133.53-752.42 µg g-1), while hyperoside was the major one in the flower and root extracts of A. hirsutus (2014.07 and 123.13 µg g-1, respectively). In DPPH and ABTS assays, radical scavenging capacity was demonstrated by all extracts of A. campylosema (47.13-48.10 and 87.03-115.36 mg TE/g, respectively) and A. hirsutus (17.82-38.67 and 47.84-57.29 mg TE/g, respectively). Reducing activity was also displayed by the extracts in CUPRAC and FRAP assays (A. campylosema: 83.06-135.20 and 59.15-90.19 mg TE/g, respectively; A. hirsutus: 53.02-83.42 and 31.25-43.25 mg TE/g, respectively). All extracts were also found to act as metal chelators (12.32-21.45 mg EDTAE/g) and exhibited total antioxidant capacity ranging from 1.16 to 1.60 mmol TE/g, in phosphomolybdenum assay. Acetyl- and butyryl-cholinesterase inhibitory effects were observed by all the extracts of the two species (1.56-4.99 mg GALAE/g). Anti-hyperpigmentation potential by inhibiting tyrosinase (54.55-67.35 mg KAE/g) was reported as well. Carbohydrate hydrolyzing enzymes, amylase and glucosidase were also inhibited (0.22-1.03 mmol ACAE/g). Overall, A. campylosema extracts showed relatively better antioxidant and enzyme inhibitory potentials compared to A. hirsutus extracts. Strikingly, A. hirsutus extracts was found to have higher AGE inhibition activity than A. campylosema. Although the cytotoxic effect of three different organs obtained from A. campylosema and A. hirsutus increased depending on the dose (from 10 to 200 µg/mL), it was found that both plant extracts did not show a genotoxic effect at the highest concentration of 200 µg/mL. Indeed, data amassed from this current scientific work showed the two selected Astragalus species to be rich in bioactive polyphenols that could be responsible for the various pharmacological activities and hence demands to be further explored for their possible applications as natural health promoting agents.


Assuntos
Astrágalo (Planta)/química , Flavonoides/análise , Extratos Vegetais/análise , Polifenóis/análise , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/toxicidade , Astrágalo (Planta)/classificação , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Flavonoides/química , Flavonoides/toxicidade , Flores/química , Produtos Finais de Glicação Avançada/efeitos dos fármacos , Células HeLa , Humanos , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Raízes de Plantas/química , Polifenóis/química , Polifenóis/toxicidade , Turquia
12.
Antioxidants (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067702

RESUMO

Jatropha L. species, in particular, J. curcas and J. gossypiifolia, are well known medicinal plants used for treating various diseases. In the present study, leaf and stem bark extracts of J. curcas and J. gossypiifolia obtained by maceration or homogenizer assisted extraction, were investigated for their phytochemical contents and biological potential as antioxidants, enzyme inhibitors and neuromodulators. In this regard, the gene expression of tumor necrosis factor α (TNFα) and brain-derived neurotrophic factor (BDNF) was investigated in hypothalamic HypoE22 cells. Finally, a bioinformatics analysis was carried out with the aim to unravel the putative mechanisms consistent with both metabolomic fingerprints and pharmacological effects. The leaf extracts of J. curcas showed higher total phenolic content (TPC) and total flavonoid content (TFC) than the stem bark extracts (range: 5.79-48.95 mg GAE/g and 1.64-13.99 mg RE/g, respectively), while J. gossypiifolia possessed TPC and TFC in the range of 42.62-62.83 mg GAE/g and 6.97-17.63 mg RE/g, respectively. HPLC-MS/MS analysis revealed that the leaf extracts of both species obtained by homogenizer assisted extraction are richer in phytochemical compounds compared to the stem bark extracts obtained by the same extraction method. In vitro antioxidant potentials were also demonstrated in different assays (DPPH: 6.89-193.93 mg TE/g, ABTS: 20.20-255.39 mg TE/g, CUPRAC: 21.07-333.30 mg TE/g, FRAP: 14.02-168.93 mg TE/g, metal chelating activity: 3.21-17.51 mg EDTAE/g and phosphomolybdenum assay: 1.76-3.55 mmol TE/g). In particular, the leaf extract of J. curcas and the stem bark extract of J. gossypiifolia, both obtained by homogenizer assisted extraction, showed the most potent antioxidant capacity in terms of free radical scavenging and reducing activity, which could be related to their higher TPC and TFC. Furthermore, anti-neurodegenerative (acetylcholinesterase inhibition: 1.12-2.36 mg GALAE/g; butyrylcholinetserase inhibition: 0.50-3.68 mg GALAE/g), anti-hyperpigmentation (tyrosinase inhibition: 38.14-57.59 mg KAE/g) and antidiabetic (amylase inhibition: 0.28-0.62 mmol ACAE/g; glucosidase inhibition: 0.65-0.81 mmol ACAE/g) properties were displayed differentially by the different extracts. Additionally, the extracts were effective in reducing the gene expression of both TNFα and BDNF, which could be partially mediated by phenolic compounds such as naringenin, apigenin and quercetin. Indeed, the scientific data obtained from the present study complement the several other reports highlighting the pharmacological potentials of these two species, thus supporting their uses as therapeutically active plants.

13.
Foods ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071443

RESUMO

Cydonia oblonga Mill., normally known as the quince fruit, has been widely used in agro-food industries mainly to produce jams and jellies. However, other parts of the plants are still underutilized and not completely assessed for their nutraceutical profile. Therefore, in this work, the polyphenolic profile of C. oblonga was investigated using an untargeted metabolomics approach based on high-resolution mass spectrometry. Several compounds were identified in the different parts of the plants, including flavonoids (i.e., anthocyanins, flavones, flavan-3-ols, and flavonols), phenolic acids (both hydroxycinnamics and hydroxybenzoics), low-molecular-weight phenolics (tyrosol equivalents), lignans, and stilbenes. Overall, C. oblonga leaves showed the highest in vitro antioxidant potential, as revealed by 2,2-difenil-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) assays, being 189.5, 285.6, 158.9, and 348.8 mg Trolox Equivalent/g, respectively. The enzymes acetyl- and butyryl-cholinesterases were both inhibited by the different plant parts of C. oblonga, with stems showing the higher inhibitory potential. Interestingly, the fruit extracts were the only parts inhibiting the α-glucosidase, with a value of 1.36 mmol acarbose equivalents (ACAE)/g. On the other hand, strong tyrosinase inhibition was found for stems and leaves, being 72.11 and 68.32 mg Kojic acid Equivalent/g, respectively. Finally, a high number of significant (0.05 < p < 0.01) correlations were outlined between phenolics (mainly anthocyanins, flava-3-ols, and tyrosol equivalents) and the different biological assays. Taken together, our findings suggest a potential exploitation of C. oblonga leaves and stems for the food, pharmaceutical, and cosmetic industries.

14.
Food Chem Toxicol ; 153: 112268, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015423

RESUMO

The Tanacetum genus is a big treasure with the presence of biologically-active compounds and members of this genus are widely used for the treatment of several diseases in traditional medicine system. Considering this fact, we aimed to analyze the extracts from Tanacetum vulgare L. in case of chemical profiles and biological effects. Chemical characterization was performed by using UHPLC-HRMS technique and showed the presence of several phytochemical groups (107 compounds were identified, including phenolic acids, flavonoids, terpenoids and fatty acids. Biological abilities were examined by using antioxidant (DPPH, ABTS, FRAP, CUPRAC, metal chelating and phosphomolybdenum assays) and enzyme inhibition (tyrosinase, amylase, glucosidase and cholinesterase) properties. Pharmaco-toxicological investigations were also performed with the aim to identify limits of biocompatibility, anti-oxidant and neuromodulatory effects, in hypothalamic HypoE22 cells. A bioinformatic analysis was also carried to unravel the putative protein-targets for the observed biological effects. Generally, the tested hexane and hydroalcoholic extracts displayed stronger activities in antioxidant and enzyme inhibitory assays, when compared with water. In addition, multivariate analysis was performed to understand the differences in both solvents and plant parts and we clearly observed the separation of these parameters. The extracts (10 µg/mL) also stimulated DAT and inhibited TNFα and BDNF gene expression, in HypoE22 cells. In parallel, the extracts were also able to stimulate norepinephrine release from this cell line. By contrast, in the concentration range 50-100 µg/mL, the extracts reduced the HypoE22 viability, thus demonstrating cytotoxicity at concentrations 5-10 fold higher compared to those effective as neuromodulatory. Our observations manifested that T. vulgare has several beneficial effects and it can be used as a potential natural raw material for designing further health-promoting applications in nutraceutical, cosmeceutical, and pharmaceutical areas.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tanacetum/química , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/toxicidade , Artemia/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Etanol/química , Flores/química , Hexanos/química , Análise Multivariada , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/toxicidade , Componentes Aéreos da Planta/química , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Caules de Planta/química , Mapas de Interação de Proteínas , Ratos , Solventes/química , Água/química
15.
Nat Prod Res ; : 1-6, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949257

RESUMO

A limited number of mosses have been studied regarding antioxidant activity and enzyme inhibition effects. In the present study, the phytochemical content, antioxidant, and enzyme inhibition properties of the ether extracts from T.J.Kop.. were investigated as promising bryophyte sources. The ether extracts of P. ellipticum had the highest flavonoid content (52.41 ± 0.52, Rutin equivalent), and A. californica had the highest total phenolic content (25.84 ± 0.23, Gallic acid equivalent). While the P. ellipticum had the highest ABTS (mg TE/g extract) 6.60 ± 0.4); A. californica showed the highest metal chelating capacity (mg EDTA/g extract) with the values of 51.46 ± 0.26. In the enzyme activity tests, almost all values of the species were closed the each other, but P. ellipticum was exhibited higher tyrosinase activity (mg/KAE/g extract) with 48.64 ± 1.02. The results have indicated for the first time the potential importance of the selected mosses.

16.
Front Pharmacol ; 12: 660735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841167

RESUMO

Hypericum triquetrifolium and H. neurocalycinum were evaluated for their phytochemical content and in vitro bioactivity. NMR analyses were performed on the methanol extract of the aerial parts of H. triquetrifolium to establish the main classes of phytoconstituents. Then, LC-DAD-MSn analyses were performed in order to compare the composition of aerial parts and roots extracts of both Hypericum species, obtained using either methanol or water as solvents. Results, processed using multivariate data analysis, showed a significantly higher phenolic content of methanol extracts compared to water extracts, while minor qualitative differences were observed between the two. Distinctive flavonoid and PAC patterns were observed for H. triquetrifolium and H. neurocalycinum, and specific compounds were exclusively detected in one or the other species. Specifically, the phloroglucinols 7-epiclusianone, hyperfirin and hyperforin were present only in H. neurocalycinum, while hyperforin was detected only in H. triquetrifolium. Extracts were assayed using different in vitro tests to evaluate their antioxidant properties and their inhibitory activity against several enzymes, showing significant antioxidant and metal chelating activities. Furthermore, inhibitory properties against acetylcholinesterase, butyrylcholinesterase and tyrosinase were observed. Multivariate approaches were used to correlate biological data with the phytochemical composition of the different extracts. The results, showing positive correlations between specific chemical constituents and the measured bioactivities, represent preliminary data that could guide future studies aimed at isolating bioactive constituents from H. neurocalycinum and H. triquetrifolium for further pharmacological evaluations.

17.
Plants (Basel) ; 10(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916375

RESUMO

This study aimed to establish a rapid in vitro plant regeneration method from rhizome buds of Kaempferia parviflora to obtain the valuable secondary metabolites with antioxidant and enzyme inhibition properties. The disinfection effect of silver oxide nanoparticles (AgO NPs) on rhizome and effects of plant growth regulators on shoot multiplication and subsequent rooting were investigated. Surface sterilization of rhizome buds with sodium hypochlorite was insufficient to control contamination. However, immersing rhizome buds in 100 mg L-1 AgO NPs for 60 min eliminated contamination without affecting the survival of explants. The number of shoots (12.2) produced per rhizome bud was higher in Murashige and Skoog (MS) medium containing 8 µM of 6-Benzyladenine (6-BA) and 0.5 µM of Thidiazuron (TDZ) than other treatments. The highest number of roots (24), with a mean root length of 7.8 cm and the maximum shoot length (9.8 cm), were obtained on medium MS with 2 µM of Indole-3-butyric acid (IBA). A survival rate of 98% was attained when plantlets of K. parviflora were acclimatized in a growth room. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine the chemical profile of K. parviflora leaf extracts. Results showed that several biologically active flavonoids reported in rhizomes were also present in leaf tissues of both in vitro cultured and ex vitro (greenhouse-grown) plantlets of K. parviflora. We found 40 and 36 compounds in in vitro cultured and ex vitro grown leaf samples, respectively. Greenhouse leaves exhibited more potent antioxidant activities than leaves from in vitro cultures. A higher acetylcholinesterase inhibitory ability was obtained for greenhouse leaves (1.07 mg/mL). However, leaves from in vitro cultures exhibited stronger butyrylcholinesterase inhibitory abilities. These results suggest that leaves of K. parviflora, as major byproducts of black ginger cultivation, could be used as valuable alternative sources for extracting bioactive compounds.

18.
Food Funct ; 12(8): 3443-3454, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900332

RESUMO

The genus Limonium includes important halophyte plants containing a variety of bioactive compounds of therapeutic interest. In the present work, the untargeted phytochemical profiles of both aerial part and root extracts from six Limonium species namely, L. bellidifolium, L. globuliferum, L. gmelinii, L. lilacinum, L. sinuatum and L. iconicum from Turkey were determined. Furthermore, several biological activities (in vitro antioxidant and enzyme inhibitory effects) were investigated. Overall, significant amounts of total phenolics (43.64-238.18 mg g-1) and flavonoids (1.61-129.69 mg g-1) were recorded. Particularly, the root extracts of L. gmelinii, L. iconicum and L. globuliferum showed the highest total phenolic content (204.13-238.18 mg g-1), whilst the highest total flavonoid content was recorded in the root extracts of L. gmelinii (129.69 mg g-1). Overall, the tested extracts demonstrated potent radical scavenging activities in both DPPH (2,2- diphenyl-1-picrylhydrazyl) and ABTS (3-ethylbenzothiazoline-6-sulphonic acid) (90.10-507.94 mg g-1 and 163.39-1175.34 mg g-1, respectively). However, the highest scavenging potential (p < 0.05) was displayed by the root extracts of L. iconicum. Conversely, the metal chelating ability assay revealed that L. lilacinum root extract showed the highest activity (21.03 mg g-1). Interestingly, all the extracts were found to be active inhibitors of cholinesterases (AChE (acetylcholinesterase): 4.20-5.11 mg GALAE (galantamine equivalent) per g; BChE (butyrylcholinesterase): 3.89-10.75 mg GALAE per g), amylase (0.52-1.09 mmol ACAE (acarbose equivalent) per g) and tyrosinase (119.41-155.67 mg KAE (kojic acid equivalent) per g), unlike for glucosidase (2.31-2.41 mmol ACAE per g). Taken together, these findings demonstrated a diverse chemical profiles and biological of the extracts, to be potentially considered as phytotherapeutic or functional ingredients due to their antioxidant properties and inhibition of key enzymes involved in several diseases.


Assuntos
Suplementos Nutricionais/análise , Metaboloma , Plumbaginaceae/química , Antioxidantes/análise , Inibidores Enzimáticos/análise , Flavonoides/análise , Fenóis/análise , Compostos Fitoquímicos/análise , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Raízes de Plantas/química , Plumbaginaceae/classificação , Especificidade da Espécie , Turquia
19.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921724

RESUMO

To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.

20.
Antibiotics (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672329

RESUMO

To avail the possible pharmacological actions of Brideliaferruginea Benth., the present investigation was designed to quantitatively analyze the total flavonoid and phenolic contents and assess the various antioxidant and enzyme inhibition properties of leaf and stem bark extracts (ethyl acetate, water and methanolic) of B. ferruginea. Anti-proliferative effect was also investigated against human colon cancer cells (HCT116) as well as the antimicrobial potential against multiple bacterial and fungal (yeasts and dermatophytes) strains. The methanolic and water extracts of the stem bark demonstrated the highest phenolic content (193.58 ± 0.98 and 187.84 ± 1.88 mg/g, respectively), while the leaf extracts showed comparatively higher flavonoid contents (24.37-42.31 mg/g). Overall, the methanolic extracts were found to possess the most significant antioxidant potency. Compared to the other extracts, methanolic extracts of the B. ferruginea were revealed to be most potent inhibitors of acetyl- and butyryl-cholinesterases, tyrosinase α-amylase, except α-glucosidase. Only the ethyl acetate extracts were found to inhibit glucosidase. Additionally, the stem bark methanolic extract also showed potent inhibitory activity against E. coli and gram-positive bacteria (MIC (minimum inhibitory concentration): 2.48-62.99 µg/mL), as well as all the tested fungi (MIC: 4.96-62.99 µg/mL). In conclusion, B. ferruginea can be regarded as a promising source of bioactive compounds displaying multifunctional pharmacological activities and thus is a potential candidate for further investigations in the endeavor to develop botanical formulations for pharmaceutical and cosmeceutical industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...