Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34080635

RESUMO

Despite the recognized significance of reversible protein lipidation (S-acylation) for T cell receptor signal transduction, the enzymatic control of this post-translational modification in T cells remains poorly understood. Here, we demonstrate that DHHC21 (also known as ZDHHC21), a member of the DHHC family of mammalian protein acyltransferases, mediates T cell receptor-induced S-acylation of proximal T cell signaling proteins. Using Zdhhc21dep mice, which express a functionally deficient version of DHHC21, we show that DHHC21 is a Ca2+/calmodulin-dependent enzyme critical for activation of naïve CD4+ T cells in response to T cell receptor stimulation. We find that disruption of the Ca2+/calmodulin-binding domain of DHHC21 does not affect thymic T cell development but prevents differentiation of peripheral CD4+ T cells into Th1, Th2 and Th17 effector T helper lineages. Our findings identify DHHC21 as an essential component of the T cell receptor signaling machinery and define a new role for protein acyltransferases in regulation of T cell-mediated immunity.

2.
J Biol Chem ; : 100311, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33482200

RESUMO

ZAP-70 is a tyrosine kinase essential for T cell immune responses. Upon engagement of the T cell receptor (TCR), ZAP-70 is recruited to the specialized plasma membrane domains, becomes activated and is released to phosphorylate its laterally segregated targets. A shift in ZAP-70 distribution at the plasma membrane is recognized as a critical step in TCR signal transduction and amplification. However, the molecular mechanism supporting stimulation-dependent plasma membrane compartmentalization of ZAP-70 remains poorly understood. In this study, we identified previously uncharacterized lipidation (S-acylation) of ZAP-70 using Acyl-Biotin Exchange (ABE) assay, a technique that selectively captures S-acylated proteins. We found that this post-translational modification of ZAP-70 is dispensable for its enzymatic activity. However, the lipidation-deficient mutant of ZAP-70 failed to propagate the TCR pathway suggesting that S-acylation is essential for ZAP-70 interaction with its protein substrates. The kinetics of ZAP-70 S-acylation were consistent with TCR signaling events indicating that agonist-induced S-acylation is a part of the signaling mechanism controlling T cell activation and function. Taken together, our results suggest that TCR-induced S-acylation of ZAP-70 can serve as a critical regulator of T cell-mediated immunity.

3.
J Neurosci ; 40(45): 8629-8636, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046551

RESUMO

Zn2+ has been shown to have a wide range of modulatory effects on neuronal AMPARs. However, the mechanism of modulation is largely unknown. Here we show that Zn2+ inhibits GluA2(Q) homomeric receptors in an activity- and voltage-dependent manner, indicating a pore block mechanism. The rate of inhibition is slow, in the hundreds of milliseconds at millimolar Zn2+ concentrations; hence, the inhibition is only observed in the residual nondesensitizing currents. Consequently, the inhibition is higher for GluA2 receptors in complex with auxiliary subunits γ2 and γ8 where the residual activation is larger. The extent of inhibition is also dependent on charge at site 607, the site that undergoes RNA editing in GluA2 subunits replacing glutamine to arginine, with the percent inhibition being lower and IC50 being higher for the edited GluA2(R) relative to unedited GluA2(Q) and to GluA2(Q607E), a mutation observed in the genetic screen of a patient exhibiting developmental delays. We also show that Zn2+ inhibition is significant during rapid repetitive activity with pulses of millimolar concentrations of glutamate in both receptors expressed in HEK cells as well as in native receptors in cortical neurons of C57BL/6J mice of either sex, indicating a physiological relevance of this inhibition.SIGNIFICANCE STATEMENT Zn2+ is present along with glutamate in synaptic vesicles and coreleased during synaptic transmission, modulating the postsynaptic ionotropic glutamate receptors. While Zn2+ inhibition of the NMDA subtype of the ionotropic glutamate receptors is well characterized, the mechanism of modulation of the AMPA subtype is much less known. Here we have systematically studied Zn2+ inhibition of AMPARs by varying calcium permeability, auxiliary subunits, and activation levels and show that Zn2+ inhibits AMPARs in an activity-dependent manner, opening up this pathway as a means to pharmacologically modulate the receptors.

4.
Mol Biol Rep ; 47(8): 6471-6478, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32789573

RESUMO

S-acylation reversible-post-translational lipidation of cysteine residues-is emerging as an important regulatory mechanism in T cell signaling. Dynamic S-acylation is critical for protein recruitment into the T cell receptor complex and initiation of the subsequent signaling cascade. However, the enzymatic control of protein S-acylation in T cells remains poorly understood. Here, we report a previously uncharacterized role of DHHC21, a member of the mammalian family of DHHC protein acyltransferases, in regulation of the T cell receptor pathway. We found that loss of DHHC21 prevented S-acylation of key T cell signaling proteins, resulting in disruption of the early signaling events and suppressed expression of T cell activation markers. Furthermore, downregulation of DHHC21 prevented activation and differentiation of naïve T cells into effector subtypes. Together, our study provides the first direct evidence that DHHC protein acyltransferases can play an essential role in regulation of T cell-mediated immunity.

5.
J Vis Exp ; (158)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338654

RESUMO

Protein S-acylation, also referred to as S-palmitoylation, is a reversible post-translational modification of cysteine residues with long-chain fatty acids via a labile thioester bond. S-acylation, which is emerging as a widespread regulatory mechanism, can modulate almost all aspects of the biological activity of proteins, from complex formation to protein trafficking and protein stability. The recent progress in understanding of the biological function of protein S-acylation was achieved largely due to the development of novel biochemical tools allowing robust and sensitive detection of protein S-acylation in a variety of biological samples. Here, we describe acyl resin-assisted capture (Acyl-RAC), a recently developed method based on selective capture of endogenously S-acylated proteins by thiol-reactive Sepharose beads. Compared to existing approaches, Acyl-RAC requires fewer steps and can yield more reliable results when coupled with mass spectrometry for identification of novel S-acylation targets. A major limitation in this technique is the lack of ability to discriminate between fatty acid species attached to cysteines via the same thioester bond.


Assuntos
Acilação/genética , Proteína S/metabolismo
6.
Biophys J ; 118(4): 826-835, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31547976

RESUMO

S-palmitoylation is a reversible posttranslational modification that plays an important role in regulating protein localization, trafficking, and stability. Recent studies have shown that some proteins undergo extremely rapid palmitoylation/depalmitoylation cycles after cellular stimulation supporting a direct signaling role for this posttranslational modification. Here, we investigated whether ß-adrenergic stimulation of cardiomyocytes led to stimulus-dependent palmitoylation of downstream signaling proteins. We found that ß-adrenergic stimulation led to rapidly increased Gαs and Gαi palmitoylation. The kinetics of palmitoylation was temporally consistent with the downstream production of cAMP and contractile responses. We identified the plasma membrane-localized palmitoyl acyltransferase DHHC5 as an important mediator of the stimulus-dependent palmitoylation in cardiomyocytes. Knockdown of DHHC5 showed that this enzyme is necessary for palmitoylation of Gαs, Gαi, and functional responses downstream of ß-adrenergic stimulation. A palmitoylation assay with purified components revealed that Gαs and Gαi are direct substrates of DHHC5. Finally, we provided evidence that the C-terminal tail of DHHC5 can be palmitoylated in response to stimulation and such modification is important for its dynamic localization and function in the plasma membrane. Our results reveal that DHHC5 is a central regulator of signaling downstream of ß-adrenergic receptors in cardiomyocytes.

7.
Front Cell Dev Biol ; 7: 198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620439

RESUMO

Chronic ER stress occurs when protein misfolding in the Endoplasmic reticulum (ER) lumen remains unresolved despite activation of the unfolded protein response. We have shown that traumatic injury such as a severe burn leads to chronic ER stress in vivo leading to systemic inflammation which can last for more than a year. The mechanisms linking chronic ER stress to systemic inflammatory responses are not clear. Here we show that induction of chronic ER stress leads to the release of known and novel damage-associated molecular patterns (DAMPs). The secreted DAMPs are aggregated and markedly protease resistant. ER stress-derived DAMPs activate dendritic cells (DCs) which are then capable of polarizing naïve T cells. Our findings indicate that induction of chronic ER stress may lead to the release of hyperstable DAMPs into the circulation resulting in persistent systemic inflammation and adverse outcomes.

8.
Proc Natl Acad Sci U S A ; 112(38): 11876-80, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351666

RESUMO

Palmitoylation is the posttranslational modification of proteins with a 16-carbon fatty acid chain through a labile thioester bond. The reversibility of protein palmitoylation and its profound effect on protein function suggest that this modification could play an important role as an intracellular signaling mechanism. Evidence that palmitoylation of proteins occurs with the kinetics required for signal transduction is not clear, however. Here we show that engagement of the Fas receptor by its ligand leads to an extremely rapid and transient increase in palmitoylation levels of the tyrosine kinase Lck. Lck palmitoylation kinetics are consistent with the activation of downstream signaling proteins, such as Zap70 and PLC-γ1. Inhibiting Lck palmitoylation not only disrupts proximal Fas signaling events, but also renders cells resistant to Fas-mediated apoptosis. Knockdown of the palmitoyl acyl transferase DHHC21 eliminates activation of Lck and downstream signaling after Fas receptor stimulation. Our findings demonstrate highly dynamic Lck palmitoylation kinetics that are essential for signaling downstream of the Fas receptor.


Assuntos
Lipoilação , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Transdução de Sinais , Receptor fas/metabolismo , Aciltransferases/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Células Jurkat , Lipoilação/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Ácido Palmítico/metabolismo , Fosfolipase C gama/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Coloração e Rotulagem , Linfócitos T/metabolismo , Temperatura
9.
Cell Calcium ; 53(2): 152-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23122728

RESUMO

An important role in the regulation of apoptotic calcium release is played by the ubiquitously expressed family of inositol 1,4,5-trisphosphate receptor (IP(3)R) channels. One model for IP(3)R activation during apoptosis is cleavage by the apoptotic protease caspase 3. Here we show that early elevations in cytosolic calcium during apoptosis do not require caspase 3 activity. We detected a robust increase in calcium levels in response to staurosporine treatment in primary human fibroblasts and HeLa cells in the presence of the caspase inhibitor Z-VAD, indicating that calcium release during the initiation of apoptosis occurs independently of caspase 3. Similar results were obtained with MCF-7 cells which lack caspase 3 expression. Stable expression of caspase 3 in MCF-7 cells and TAT-based transduction of the active recombinant caspase 3 directly into living MCF-7 cells had marginal effects on the early events leading to cytosolic calcium elevations and irreversible commitment to apoptotic cell death. Significantly, blocking IP(3) binding to the IP(3)R with an IP(3) sponge resulted in suppression of staurosporine-induced calcium release and cell death. Collectively, our results suggest that generation of IP(3) is sufficient for the initiation of apoptotic calcium signaling, and caspase 3-mediated truncation of IP(3)R channel is a consequence, not causative, of apoptotic calcium release.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Caspase 3/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Caspase 3/química , Caspase 3/genética , Inibidores de Caspase/farmacologia , Células Cultivadas , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Células MCF-7 , Oligopeptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Estaurosporina/farmacologia
10.
J Vis Exp ; (50)2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21490580

RESUMO

Dynamic changes in intracellular calcium concentration in response to various stimuli regulates many cellular processes such as proliferation, differentiation, and apoptosis(1). During apoptosis, calcium accumulation in mitochondria promotes the release of pro-apoptotic factors from the mitochondria into the cytosol(2). It is therefore of interest to directly measure mitochondrial calcium in living cells in situ during apoptosis. High-resolution fluorescent imaging of cells loaded with dual-excitation ratiometric and non-ratiometric synthetic calcium indicator dyes has been proven to be a reliable and versatile tool to study various aspects of intracellular calcium signaling. Measuring cytosolic calcium fluxes using these techniques is relatively straightforward. However, measuring intramitochondrial calcium levels in intact cells using synthetic calcium indicators such as rhod-2 and rhod-FF is more challenging. Synthetic indicators targeted to mitochondria have blunted responses to repetitive increases in mitochondrial calcium, and disrupt mitochondrial morphology(3). Additionally, synthetic indicators tend to leak out of mitochondria over several hours which makes them unsuitable for long-term experiments. Thus, genetically encoded calcium indicators based upon green fluorescent protein (GFP)(4) or aequorin(5) targeted to mitochondria have greatly facilitated measurement of mitochondrial calcium dynamics. Here, we describe a simple method for real-time measurement of mitochondrial calcium fluxes in response to different stimuli. The method is based on fluorescence microscopy of 'ratiometric-pericam' which is selectively targeted to mitochondria. Ratiometric pericam is a calcium indicator based on a fusion of circularly permuted yellow fluorescent protein and calmodulin(4). Binding of calcium to ratiometric pericam causes a shift of its excitation peak from 415 nm to 494 nm, while the emission spectrum, which peaks around 515 nm, remains unchanged. Ratiometric pericam binds a single calcium ion with a dissociation constant in vitro of ~1.7 µM(4). These properties of ratiometric pericam allow the quantification of rapid and long-term changes in mitochondrial calcium concentration. Furthermore, we describe adaptation of this methodology to a standard wide-field calcium imaging microscope with commonly available filter sets. Using two distinct agonists, the purinergic agonist ATP and apoptosis-inducing drug staurosporine, we demonstrate that this method is appropriate for monitoring changes in mitochondrial calcium concentration with a temporal resolution of seconds to hours. Furthermore, we also demonstrate that ratiometric pericam is also useful for measuring mitochondrial fission/fragmentation during apoptosis. Thus, ratiometric pericam is particularly well suited for continuous long-term measurement of mitochondrial calcium dynamics during apoptosis.


Assuntos
Apoptose/fisiologia , Cálcio/fisiologia , Microscopia de Fluorescência/métodos , Mitocôndrias/fisiologia , Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estaurosporina/farmacologia , Transfecção
11.
Proc Natl Acad Sci U S A ; 107(34): 15105-10, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696918

RESUMO

The Fas receptor (also known as CD95 and APO-1) is a member of the tumor necrosis factor alpha-family of death receptors that mediate T-cell responses. Here, we show that Fas receptor signaling requires a functional T-cell receptor (TCR) complex. Fas receptor directly binds to and activates TCR components in a stimulus-dependent manner. Fas receptor stimulation does not activate canonical downstream TCR pathways, but instead the TCR complex is required specifically for Fas-mediated calcium release. Importantly, null mutations in Lck, ZAP70, and the TCR alpha- and beta-chains abrogate Fas signaling. Our results reveal a direct role for the TCR complex in mediating Fas-specific signaling events critical for T-cell homeostasis.


Assuntos
Receptores de Antígenos de Linfócitos T/metabolismo , Receptor fas/metabolismo , Apoptose , Sequência de Bases , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Sinalização do Cálcio , Células Cultivadas , Primers do DNA/genética , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Dados de Sequência Molecular , Mutação , Fosfolipase C gama/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/metabolismo
12.
J Biol Chem ; 282(9): 5969-72, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17218320

RESUMO

During differentiation of naive CD4+ helper T (TH) cells into effector cells, specific cytokine gene loci undergo extensive changes in chromatin modification. A novel lineage of TH cells that is regulated by transforming growth factor-beta (TGFbeta) and interleukin-6 (IL-6) has been identified recently as promoting tissue inflammation. These inflammatory TH (THi) cells, also called TH17 or TH(IL-17), produce IL-17 and IL-17F, two highly homologous cytokines that have genes located in the same chromosomal region. Here, using chromatin immunoprecipitation techniques, we have demonstrated that similar to the regulation in TH1 and TH2 cell lineages, polarization of THi cells was accompanied by selective chromatin remodeling events. Histone H3 acetylation and Lys-4 tri-methylation were specifically associated with IL-17 and IL-17F gene promoters in THi lineage. At an early stage of T cell activation, histone acetylation on these promoters was greatly promoted by a combination of TGFbeta and IL-6, suggesting their synergistic role in initiating chromatin accessibility for transcription factors. Furthermore, we identified multiple noncoding sequences within the IL-17-IL-17F locus conserved across species. These elements were also associated with hyperacetylated histone 3 in a lineage-specific manner and may thus serve as potential regulatory regions. In summary, our results demonstrate for the first time that THi cell differentiation is associated with epigenetic changes in the IL-17-IL-17F locus, which suggests novel mechanisms in T cell functional regulation.


Assuntos
Diferenciação Celular/imunologia , Montagem e Desmontagem da Cromatina , Inflamação/genética , Interleucina-17/genética , Linfócitos T Auxiliares-Indutores/citologia , Acetilação , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Sequência Conservada , Epigênese Genética , Histonas/metabolismo , Interleucina-6/fisiologia , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...