Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500744

RESUMO

Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.

2.
Int J Biol Macromol ; 190: 636-648, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517025

RESUMO

SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , COVID-19/tratamento farmacológico , Proteínas do Nucleocapsídeo de Coronavírus/química , DNA Helicases/química , Decitabina/química , Mesilato de Imatinib/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas de Ligação a RNA/química , SARS-CoV-2/química , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Decitabina/farmacologia , Sistemas de Liberação de Medicamentos , Genômica , Mesilato de Imatinib/farmacologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo
3.
Int Immunopharmacol ; 99: 108028, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365077

RESUMO

Acute kidney injury (AKI) is a world-wide health problem and linked with increased risk of morbidity/mortality in hospitalized patients and its incidence has been on the rise in the last few decades. AKI is characterized by renal tubular injury which results from interactions between bacterial products and host immune responses which manifests as a rapid deterioration in renal function. Immune system dysfunction induced by sepsis plays a crucial role in AKI through activation of multiple immune cells of both innate and adaptive origin. These cells release pro-inflammatory cytokines such as IL-6, IL-17A, IFN-γ, and reactive oxygen metabolites. Adaptive immune cells, especially T cells also participate in the amplification of renal inflammation through release of pro-inflammatory cytokines such as IL-17A, IFN-γ, TNF-α, and IL-10. Non-receptor protein tyrosine kinases such as ITK play crucial role in T cell through modulation of key downstream molecules such as PLCγ, STAT3, NFkB, NFATc1, and p-38MAPK. However, it has not been explored in CD4+ T cells during AKI. Therefore, this study investigated the effect of ITK inhibitor on AKI linked clinical parameters (serum BUN, creatinine and renal histopathology), downstream signaling molecules in CD4+ T cells (PLCγ, STAT3, NFkB, and NFATc1), Th1/Th2/Treg cell markers (IL-17A, TNF-α, and IL-10), and neutrophil-mediated oxidative inflammation (MPO/carbonyl/nitrotyrosine formation) in mice. Our data exhibit elevated p-ITK levels in CD4+ T cells which is associated with renal dysfunction and elevated Th1/Th17/neutrophilic responses. Blockade of ITK signaling resulted in ameliorated of AKI associated biochemical; parameters through downregulation in transcription signaling in CD4+ T cells and Th1/Th17 immune responses. Therefore, this report suggests that ITK inhibition could be an effective strategy to halt renal dysfunction associated with AKI.

4.
Nutrients ; 13(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371877

RESUMO

Pathological mechanisms underlining diabetic bone defects include oxidative damage and insulin/IGF-1 imbalance. Morin is a bioflavonoid with antioxidant and anti-diabetic effects. This study evaluates morin's protective effects against altered bone histomorphometry in diabetic rats through assessing insulin/IGF-1 pathway as a potential mechanism. Diabetic animals were administered two morin doses (15 and 30 mg/kg) for 5 weeks. Different serum hepatic and renal functions tests were assessed. Bone density and histomorphometry in cortical and trabecular tissues were evaluated histologically. The expressions of insulin, c-peptide and IGF-1 were estimated. In addition, the enzymatic activities of the major antioxidant enzymes were determined. Diabetic-associated alterations in serum glucose, aminotransferases, urea and creatinine were attenuated by morin. Diabetic bone cortical and trabecular histomorphometry were impaired with increased fibrosis, osteoclastic functions, osteoid formation and reduced mineralization, which was reversed by morin; particularly the 30 mg/kg dose. Insulin/IGF-1 levels were diminished in diabetic animals, while morin treatment enhanced their levels significantly. Diabetes also triggered systemic oxidative stress noticeably. The higher dose (30 mg/kg) of morin corrected the endogenous antioxidant enzymatic activities in diabetic rats. Findings indicate the potential value of morin supplementation against hyperglycemia-induced skeletal impairments. Activation of insulin/IGF-1 signaling could be the underlining mechanism behind these effects.


Assuntos
Antioxidantes/farmacologia , Glicemia/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fêmur/efeitos dos fármacos , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/sangue , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/patologia , Fêmur/metabolismo , Fêmur/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais , Estreptozocina
5.
Mol Divers ; 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460053

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR-2) is critically involved in cancer angiogenesis. Blocking of VEGFR-2 signaling pathway proved effective suppression of tumor growth. Accordingly, two series of new triazoloquinoxaline-based derivatives were designed and synthesized as VEGFR-2 inhibitors. All in vitro cytotoxic activities of the synthesized compounds were evaluated against two human cancer cell lines (MCF-7 and HepG2). To confirm the potential mechanism of cytotoxicity, enzymatic assays against VEGFR-2 were estimated for all the target compounds. The results of VEGFR-2 inhibitory activity and cytotoxicity were in high correlation. Compound 22a exhibited the highest cytotoxic effect with IC50 values of 6.2 and 4.9 µM against MCF-7 and HepG2, respectively, comparing to sorafenib (IC50 = 3.53 and 2.18 µM). Such derivative showed the best VEGFR-2 inhibitory activity with an IC50 value of 3.9 nM, which is very close to that of sorafenib (IC50 = 3.13 nM). Moreover, compounds 22b, 23b, and 23e exhibited strong cytotoxic activity with IC50 values ranging from 11.7 to 15.3 µM. Also, these compounds showed promising VEGFR-2 inhibition with IC50 values of 4.2, 5.7, and 4.7 nM, respectively. In silico docking, ADMET, and toxicity studies were carried out for the synthesized compounds. The results revealed that some compounds have a good binding mode against VEGFR-2 and a high level of drug-likeness.

6.
J Enzyme Inhib Med Chem ; 36(1): 1760-1782, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340610

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular
7.
Sci Rep ; 11(1): 8589, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883647

RESUMO

The advancement in the processing speeds of computing machines has facilitated the development of complex physiologically based pharmacokinetic (PBPK) models. These PBPK models can incorporate disease-specific data and could be used to predict pharmacokinetics (PK) of administered drugs in different chronic conditions. The present study aimed to develop and evaluate PBPK drug-disease models for captopril after incorporating relevant pathophysiological changes occurring in adult chronic kidney disease (CKD) and chronic heart failure (CHF) populations. The population-based PBPK simulator Simcyp was used as a modeling and simulation platform. The visual predictive checks and mean observed/predicted ratios (ratio(Obs/pred)) of the PK parameters were used for model evaluation. The developed disease models were successful in predicting captopril PK in all three stages of CKD (mild, moderate, and severe) and CHF, as the observed and predicted PK profiles and the ratio(obs/pred) for the PK parameters were in close agreement. The developed captopril PBPK models can assist in tailoring captopril dosages in patients with different disease severity (CKD and CHF).

8.
Clin Exp Pharmacol Physiol ; 48(4): 478-489, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368625

RESUMO

Cardiovascular disease is a leading cause of death in diabetic patients. Hyperglycaemia and iatrogenic hypoglycaemia exacerbate several pathogenic mechanisms underlying hypertension and heart diseases. Carnitine is a potent endogenous antioxidant and cellular fatty acid transporter for antioxidative stress and energy production in the cardiovascular system. The current study aimed to find the role of carnitine in the regulation of hypoglycaemia-induced hypertension and cardiac hypertrophy. Male rats received insulin glargine (InG) to induce hypoglycaemia followed by D-carnitine or acetyl-L-carnitine for carnitine depletion or carnitine supplementation, respectively. The obtained results showed that carnitine deficiency provoked hypoglycaemia-induced hypertension. Mean arterial pressure was elevated from 78.16 ± 11.4 to 100 ± 5.11 mm Hg in InG treated group, and from 78.2 ± 8.5 to 123.4 ± 28.2 mm Hg in InG + D-carnitine treated group. Acetyl-L-carnitine resisted the elevation in blood pressure in all hypoglycaemic animals and kept it within the normal values (68.33 ± 6.7 mm Hg). Acetyl-L-carnitine increased myocardial carnitine content leading to the attenuation of hypoglycaemia-induced oxidative stress, which was evaluated through measurement of the oxidative stress biomarkers such as inducible nitric oxide synthase, NAD(P)H quinone dehydrogenase-1, heme oxygenase-I, and glutathione S-transferase. Moreover, acetyl-L-carnitine prevented induction of gene expression of cardiac hypertrophy markers during hypoglycaemic conditions, which was assessed via the evaluation of mRNA expression of α-myosin heavy chain and ß-myosin heavy chain. These findings demonstrate that carnitine might play an essential role in prevention of hypoglycaemia-induced hypertension and cardiac hypertrophy through providing energy and antioxidants to the cardiovascular system.

9.
Int J Med Sci ; 17(18): 3098-3106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173431

RESUMO

Background and objectives: Although diabetic-induced hepatotoxicity is less common, it can be included in the list of target organ pathologies associated with diabetes. This study aimed to investigate the potential therapeutic role of sacubitril/valsartan (LCZ696) in modulating oxidative and inflammatory injuries and liver fibrosis in STZ-induced hyperglycemic rats in comparison to valsartan alone. Materials and Methods: Following the induction of diabetes using a single dose of streptozotocin (STZ), STZ-induced hyperglycemic animals were administered LCZ696 or valsartan for 6 weeks. Glucose, transaminases, lipid profile, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin - 6 (IL-6), were estimated using the obtained serum. Oxidative stress biomarkers including thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were measured in the liver homogenate. Additionally, the levels of TNF-α, IL-1ß, IL-6, and nuclear factor - kappa ß (NF-κB) levels were estimated in hepatic tissue. To assess the general histopathological changes, harvested liver tissue was treated with hematoxylin and eosin or Masson's trichrome staining to detect fibrosis. Results: STZ-induced hyperglycemic rats demonstrated high blood glucose, dyslipidemia, and significant elevation in hepatic transaminases, proinflammatory cytokines, NF-κB, lipid peroxidation, and hepatic fibrosis, with impairment in antioxidant enzymes. In STZ-induced hyperglycemic rats, the administration of LCZ696 ameliorated hyperglycemia, dyslipidemia, improved liver functions, and boosted antioxidants enzymes. Furthermore, LCZ696 therapy attenuated oxidation, inflammation, progression of liver injury, and hepatic fibrosis. LCZ696 was superior to valsartan in reducing AST, hepatic fibrosis, tissue IL-1ß, TNF-α and NF-κB. In addition, compared with the valsartan group, LCZ696 significantly increased the antioxidant parameters such as GSH, SOD, CAT and GPx. Conclusion: Collectively, our data demonstrated that LCZ696 could suppress the progression of diabetes-induced hepatic fibrosis, correlating with reduced oxidative stress, hepatic inflammation and NF-κB compared with valsartan alone.

10.
Pharmacol Biochem Behav ; 199: 173057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069747

RESUMO

Little is known about genetic and epigenetic alterations in autism spectrum disorder. Moreover, the efficiency of DNA repair in autism must be improved to correct these alterations. We examined whether 3-aminobenzamide (3-AB) could reverse these alterations. We conducted experiments to clarify the molecular mechanism underlying these ameliorations. An assessment of genetic and epigenetic alterations by a modified comet assay showed elevated levels of oxidative DNA strand breaks and DNA hypermethylation in BTBR T+Itpr3tf/J (BTBR) mice used as a model of autism. Oxidative DNA strand breaks and DNA methylation were further quantified fluorometrically, and the results showed similar changes. Conversely, 3-AB treated BTBR mice showed a significant reduction in these alterations compared with untreated mice. The expressions of 43 genes involved in DNA repair were altered in BTBR mice. RT2 Profiler PCR Array revealed significantly altered expression of seven genes, which was confirmed by RT-PCR analyses. 3-AB treatment relieved these disturbances and significantly improved Ogg1 and Rad1 up-regulation. Moreover, autism-like behaviors were also mitigated in BTBR animals by 3-AB treatment without alterations in locomotor activities. The simultaneous effects of reduced DNA damage and DNA methylation levels as well as the regulation of repair gene expression indicate the potential of 3-AB as a therapeutic agent to decrease the levels of DNA damage and DNA methylation in autistic patients. The current data may help in the development of therapies that ultimately provide a better quality of life for individuals suffering from autism.

11.
Toxicology ; 446: 152597, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991955

RESUMO

Genetic as well as environmental factors are believed to play a significant role in the pathogenesis and progression of autism spectrum disorder (ASD). Phthalates are ubiquitous environmental contaminants as they are used plasticizers in several household/industrial products such as vinyl flooring, plastic toys, and cosmetic products. One of the plasticizers that is quite prevalent in these products is di-2-ethylhexyl phthalate (DEHP) which can cause human exposure via dermal/inhalation/ingestion routes. DEHP and its metabolites are associated with behavioral dysregulations and reported to be increased in systemic circulation of ASD children. DEHP is reported to cause upregulation of several inflammatory cytokines in different cells/tissues, however its role in inflammatory signaling of ASD monocytes has not been investigated earlier. Therefore, this study evaluated the effects of DEHP (at 5 µM final concentration for 24 h) on inflammatory profile (NFkB, STAT3, IL-6, TNF-α, IL-1ß) in monocytes of ASD subjects and typically developing control (TDC) children. Our data show that DEHP upregulates NFkB/STAT3 expression which is associated with increased inflammatory profile in monocytes of ASD and TDC subjects, however its effect is much greater in magnitude in the former group. This was confirmed by utilization of NFkB inhibitor, PDTC and STAT3 inhibitor, Stattic which caused reduction in inflammatory cytokines from DEHP-treated monocytes in ASD group. In short, DEHP causes further elevation in inflammatory signaling in ASD monocytes which could be due to existing inflammation in this group. These data suggest that use of plasticizers such as DEHP should be minimized in order to avoid their potential effects on immune dysfunction associated with ASD.


Assuntos
Transtorno do Espectro Autista/metabolismo , Dietilexilftalato/toxicidade , Mediadores da Inflamação/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Plastificantes/toxicidade , Transtorno do Espectro Autista/patologia , Células Cultivadas , Criança , Estudos Transversais , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Monócitos/patologia
12.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32792840

RESUMO

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

13.
Drug Alcohol Depend ; 214: 108157, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652378

RESUMO

BACKGROUND: Amphetamine use disorder has been recently classified as an epidemic condition. Amphetamine use/abuse has been associated with several neurological and inflammatory effects. However, the exact mechanism involved in these effects warrants further investigation. The aim of this study was to determine any alterations in the serum proteome of individuals classified as patients with amphetamine use disorder compared to that of control subjects. METHODS: An untargeted proteomic approach employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was used to identify the patterns of differentially expressed proteins. Serum samples were collected from 20 individuals (males) including 10 subjects with amphetamine use disorder and 10 healthy controls for the present study. RESULTS: The analysis revealed 78 proteins with a significant difference in protein abundance between the amphetamine-addicted subjects and controls. Among them, 71 proteins were upregulated while 7 proteins remained downregulated in the amphetamine-addicted group. These proteins were further analyzed by ingenuity pathway analysis (IPA) to investigate their correlation with other biomarkers. IPA revealed the correlation of altered proteins with mitogen-activated protein kinase (MAP2K1/K2), p38MAPK, protein kinase-B (PKB; Akt), extracellular signal-regulated kinase (ERK1/2), and nuclear factor-κB signaling pathways. Importantly, these pathways are highly involved in neurological diseases, inflammatory responses, and cellular compromise. CONCLUSIONS: Our data suggest that the changes in the levels of serum proteins between amphetamine and control groups might affect cellular compromise, inflammatory response, and neurological diseases.


Assuntos
Anfetamina , Proteoma/metabolismo , Transtornos Relacionados ao Uso de Substâncias/sangue , Adulto , Biomarcadores , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , MAP Quinase Quinase 1 , Masculino , Espectrometria de Massas , Proteoma/análise , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
14.
Int J Biol Macromol ; 163: 1-8, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32599245

RESUMO

The current pandemic of 2019 novel coronavirus disease (COVID-19) caused by a novel virus strain, 2019-nCoV/SARS-CoV-2 have posed a serious threat to global public health and economy. It is largely unknown how the human immune system responds to this infection. A better understanding of the immune response to SARS-CoV-2 will be important to develop therapeutics against COVID-19. Here, we have used transcriptomic profile of human alveolar adenocarcinoma cells (A549) infected with SARS-CoV-2 and employed a network biology approach to generate human-virus interactome. Network topological analysis discovers 15 SARS-CoV-2 targets, which belongs to a subset of interferon (IFN) stimulated genes (ISGs). These ISGs (IFIT1, IFITM1, IRF7, ISG15, MX1, and OAS2) can be considered as potential candidates for drug targets in the treatments of COVID-19. We have identified significant interaction between ISGs and TLR3 agonists, like poly I: C, and imiquimod, and suggests that TLR3 agonists can be considered as a potential drug for drug repurposing in COVID-19. Our network centric analysis suggests that moderating the innate immune response is a valuable approach to target COVID-19.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Proteína Semelhante a ELAV 2/genética , Proteína Semelhante a ELAV 2/metabolismo , Pneumonia Viral/genética , Células A549 , Antivirais/farmacologia , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Proteína Semelhante a ELAV 2/imunologia , Redes Reguladoras de Genes , Humanos , Imunidade Inata , Interferon gama/imunologia , Interferon gama/farmacologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Mapas de Interação de Proteínas/genética , SARS-CoV-2 , Transdução de Sinais , Transcriptoma
15.
Oxid Med Cell Longev ; 2020: 7453406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509153

RESUMO

Sorafenib is a small, orally-active multikinase inhibitor that is most frequently used for the management of renal cell carcinoma, hepatocellular carcinoma, and radioactive iodine-resistant thyroid carcinoma. However, recent reports have associated sorafenib with hepatotoxicity that can limit its clinical application, although the mechanism of hepatotoxicity is still to be elucidated. Thus, our study was designed to explore the molecular mechanisms underlying sorafenib-induced hepatotoxicity in an in vivo model. Twenty male adult Wistar rats were randomly placed into two groups; the first group received an oral dose of normal saline (vehicle), and the second received sorafenib (30 mg/kg) once daily for twenty-one consecutive days. After twenty-one days, liver tissues and blood samples were used for gene expression, protein expression, and biochemical analysis. Sorafenib treatment resulted in markedly increased levels of alanine aminotransferase and alkaline phosphatase, which indicate the presence of liver damage. Additionally, sorafenib administration induced the inflammatory and oxidative stress marker NF-κB-p65, while antioxidant enzymes were attenuated. Moreover, sorafenib caused upregulation of both gene and protein for the apoptotic markers cleaved Caspase-3, Bax, and Bid, and downregulation of the antiapoptotic protein Bcl-2. In conclusion, our findings suggest that sorafenib administration is associated with hepatotoxicity, which might be due to the activation of oxidative stress and apoptotic pathways.


Assuntos
Antineoplásicos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Sorafenibe/efeitos adversos , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Antineoplásicos/administração & dosagem , Apoptose , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Fígado/patologia , Masculino , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Sorafenibe/administração & dosagem
16.
Saudi Pharm J ; 28(5): 621-629, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435144

RESUMO

Research studies have indicated that the comorbidity burden of mood disorders and obesity is reasonably high. Insulin signaling has been shown to modulate multiple physiological functions in the brain, indicating its association with neuropsychiatric diseases, including mood disorders. Leptin is a hormone responsible for regulating body weight and insulin homeostasis. Previous studies on db/db mice (a mouse model that carries a spontaneous genetic mutation in leptin receptor Leprdb ) have shown that they exhibit inflammation as well as neurobehavioral traits associated with mood. Therefore, targeting inflammatory pathways such as TNF-α may be an effective strategy in the treatment of obesity-linked mood disorders. The objective of this study was to investigate the effect of long-term administration of etanercept (a TNF-α blocker) on anxiety and depressive-like behaviors in db/db mice. This was performed using light/dark box, forced swim, and open field tests with lean littermate wild type (WT) mice serving as a control group. Using flow cytometry in peripheral blood, we further examined the molecular effects of etanercept on NF-κB p65, TNF-α, IL-17A, and TLR-4 expressing CD4+, CD8+, and CD14+ cells in the peripheral blood. Our data show that peripheral administration of etanercept decreased these cells in db/db mice. Furthermore, our results indicated that peripheral administration of etanercept reduced anxiety and depressive-like behaviors. Therefore, targeting TNF-α signaling might be an effective strategy for modulating obesity-associated depression and anxiety.

17.
Int Immunopharmacol ; 83: 106466, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32259699

RESUMO

Autismspectrum disorder (ASD) is a complex and multifactorial heterogeneous disorder. Previous investigations have revealed the association between the immune system and ASD, which is characterized by impaired communication skills. Inflammatory response through CD45 cells plays a key role in the pathogenesis of several autoimmune disorders; however, the molecular mechanism of CD45 cells in ASD is not clearly defined.In this study, we investigated the role of CD45 signaling in children with ASD. In this study, we aimed to investigate the possible involvement of CD45 cells expressing granulocyte-macrophage colony-stimulating factor and inflammatory transcription factors in ASD. Flow cytometric analysis, using peripheral blood mononuclear cells (PBMC), revealed the numbers of GM-CSF-, IFN-γ-, IL-6-, IL-9-, IL-22-, T-bet-, pStat3-, Helios-, and Stat6-producing CD45+ cells in children with ASD and children in the control group. We further evaluated the mRNA and protein expression levels of GM-CSF in PBMC by RT-PCR and western blotting analysis. Our results revealed that the children with ASD exhibited significantly higher numbers of CD45+GM-CSF+, CD45+IFN-γ+, CD45+IL-6+, CD45+IL-9+, CD45+IL-22+, CD45+T-bet+, and CD45+pStat3+ cells compared with the control group. We also found that the children with ASD showed a lower number of CD45+Helios+ and CD45+Stat6+ cells compared with the control group. Furthermore, the children with ASD showed higher GM-CSF mRNA and protein expression levels compared with the control group. These results indicated that CD45 could play an essential role in the immune abnormalities of ASD. Further investigation of the role of CD45 in neurodevelopment in ASD is warranted.


Assuntos
Transtorno do Espectro Autista/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/imunologia , Antígenos Comuns de Leucócito/metabolismo , Leucócitos Mononucleares/imunologia , Criança , Estudos Transversais , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Transdução de Sinais , Fatores de Transcrição/metabolismo
18.
Saudi Pharm J ; 28(4): 509-518, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273812

RESUMO

Gefitinib is an effective treatment for patients with locally advanced non-small cell lung cancer. However, it is associated with cardiotoxicity that can limit its clinical use. Liraglutide, a glucagon-like peptide 1 receptor agonist, showed potent cardioprotective effects with the mechanism is yet to be elucidated. Therefore, this study aimed to determine the efficiency of liraglutide in protecting the heart from damage induced by gefitinib. Adult male Wistar rats were randomly divided into control group, liraglutide group (200 µg/kg by i.p. injection), gefitinib group (30 mg/kg orally) and liraglutide plus gefitinib group. After 28 days, blood and tissue samples were collected for histopathological, biochemical, gene and protein analysis. We demonstrated that gefitinib treatment (30 mg/kg) resulted in cardiac damage as evidenced by histopathological studies. Furthermore, serum Creatine kinase-MB (CK-MB), N-terminal pro B-type natriuretic peptide (NT-proBNP) and cardiac Troponin-I (cTnI) were markedly elevated in gefitinib group. Pretreatment with liraglutide (200 µg/kg), however, restored the elevation in serum markers and diminished gefitinib-induced cardiac damage. Moreover, liraglutide improved the gene and protein levels of anti-oxidant (superoxide dismutase) and decreased the oxidative stress marker (NF-κB). Mechanistically, liraglutide offered protection through upregulation of the survival kinases (ERK1/2 and Akt) and downregulation of stress-activated kinases (JNK and P38). In this study, we provide evidence that liraglutide protects the heart from gefitinib-induced cardiac damage through its anti-oxidant property and through the activation of survival kinases.

19.
Biochimie ; 171-172: 205-212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32173487

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder which begins in early childhood and presents itself with characteristic symptoms such as repetitive behavioral patterns and problems in speech/social interactions. Adaptive immune system is thought to be involved in the etiology of ASD. T cells orchestrate amplification of inflammation through release of inflammatory mediators; however, antioxidant defenses have not been evaluated in CD4+ T cells of ASD subjects. In this study we evaluated intracellular enzymatic antioxidant potential through measurement of major antioxidant enzymes (SOD, GPx, and GR) in ASD subjects and typically developing control (TDC) children and further assessed its role in modulation of inflammation. Our data reveal that there is an increase in antioxidant potential (SOD, GPx, GR) in CD4+ T cells of ASD subjects as compared to TDC children at both protein and activity level. Further, this antioxidant increase was associated with upregulated IL-17A levels in CD4+ T cells. This was corroborated by oxidant treatment in vitro. Pretreatment with oxidant, H2O2 led to attenuation of IL-17A levels along with increased oxidative stress in stimulated CD4+ T cells from ASD subjects. These data reveal that antioxidant play an essential role in modulation of inflammatory potential in CD4+ T cells of ASD subjects.


Assuntos
Antioxidantes/metabolismo , Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/enzimologia , Interleucina-17/sangue , Subpopulações de Linfócitos T/enzimologia , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo , Subpopulações de Linfócitos T/patologia
20.
Curr Pharm Des ; 26(4): 485-491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914907

RESUMO

Mitochondria are the crucial regulators for the major source of ATP for different cellular events. Due to damage episodes, mitochondria have been established for a plethora ofalarming signals of stress that lead to cellular deterioration, thereby causing programmed cell death. Defects in mitochondria play a key role in arbitrating pathophysiological machinery with recent evince delineating a constructive role in mitophagy mediated mitochondrial injury. Mitophagy has been known for the eradication of damaged mitochondria via the autophagy process. Mitophagy has been investigated as an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis. Impaired mitophagy has been critically linked with the pathogenesis of inflammatory diseases. Nevertheless, the exact mechanism is not quite revealed, and it is still debatable. The purpose of this review was to investigate the possible role of mitophagy and its associated mechanism in inflammation-mediated diseases at both the cellular and molecular levels.


Assuntos
Autofagia , Inflamação/patologia , Mitofagia , Homeostase , Humanos , Mitocôndrias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...