Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
J Med Chem ; 64(15): 10951-10966, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34260245


Influenza viruses cause approximately half a million deaths every year worldwide. Vaccines are available but partially effective, and the number of antiviral medications is limited. Thus, it is crucial to develop therapeutic strategies to counteract this major pathogen. Influenza viruses enter the host cell via their hemagglutinin (HA) proteins. The HA subtypes of influenza A virus are phylogenetically classified into groups 1 and 2. Here, we identified an inhibitor of the HA protein, a tertiary aryl sulfonamide, that prevents influenza virus entry and replication. This compound shows potent antiviral activity against diverse H1N1, H5N1, and H3N2 influenza viruses encoding HA proteins from both groups 1 and 2. Synthesis of derivatives of this aryl sulfonamide identified moieties important for antiviral activity. This compound may be considered as a lead for drug development with the intent to be used alone or in combination with other influenza A virus antivirals to enhance pan-subtype efficacy.

Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/efeitos dos fármacos , Sulfonamidas/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
Acta Biomater ; 100: 213-222, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562987


Current 3D culture models to study colorectal cancer lack architectural support and signaling proteins provided by the tissue extracellular matrix (ECM) which may influence cell behavior and cancer progression. Therefore, the ability to study cancer cells in the context of a matrix that is physiologically more relevant and to understand how the ECM affects cancer progression has been understudied. To address this, we developed an ex-vivo 3D system, provided by intact wild type (WT) and colon cancer susceptible decellularized mouse colons (DMC), to support the growth of human cancer cells. DMC are free of viable cells but still contain extracellular matrix proteins including subsets of collagens. Stiffness, an important mechanical property, is also maintained in DMCs. Importantly, we observed that the DMC is permissive for cell proliferation and differentiation of a human colon cancer cell line (HT-29). Notably, the ability of cells in the WT DMC to differentiate was also greater when compared to Matrigel™, an extracellular matrix extract from a mouse tumor cell line. Additionally, we observed in invasion assays that DMC obtained from polyps from a colon cancer susceptible mouse model facilitated increased cell migration/invasion of colorectal cancer cells and immortalized non-tumor colonic epithelial cells compared to DMC from WT mice. Finally, using mass spectrometry, we identified extracellular matrix proteins that are more abundant in DMC from a colorectal cancer mouse model compared to age and sex-matched WT mice. We propose that these abundantly expressed proteins in the tumor microenvironment are potentially involved in colorectal cancer progression. STATEMENT OF SIGNIFICANCE: Decellularized matrices, when properly produced, are attractive biomaterials for tissue regeneration and replacement. We show here that the mouse decellularized matrices can also be repurposed to elucidate how the extracellular matrix influences human cell behavior and cancer progression. To do this we produce decellularized matrices, from mice colonic tissue, that have preserved tissue mechanical and structural properties. We demonstrate that the matrix better supports the differentiation of HT-29 cells, a colonic cancer cell line, compared to Matrigel™. Additionally, we show that the extracellular matrix contributes to colon cancer progression via invasion assays using extracellular matrix extracts. Finally, we use mass spectrometry to identify ECM proteins that are more abundant in colonic polyps compared to adjacent tissue regions. This model system may have therapeutic implications for colorectal cancer patients.

Colo/patologia , Neoplasias do Colo/patologia , Progressão da Doença , Matriz Extracelular/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Colágeno/farmacologia , Pólipos do Colo/patologia , DNA/metabolismo , Combinação de Medicamentos , Proteínas da Matriz Extracelular/metabolismo , Células HCT116 , Células HT29 , Humanos , Laminina/farmacologia , Masculino , Camundongos , Invasividade Neoplásica , Proteoglicanas/farmacologia , Resistência à Tração
Am J Physiol Lung Cell Mol Physiol ; 315(2): L313-L327, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722564


While primary cystic fibrosis (CF) and non-CF human bronchial epithelial basal cells (HBECs) accurately represent in vivo phenotypes, one barrier to their wider use has been a limited ability to clone and expand cells in sufficient numbers to produce rare genotypes using genome-editing tools. Recently, conditional reprogramming of cells (CRC) with a Rho-associated protein kinase (ROCK) inhibitor and culture on an irradiated fibroblast feeder layer resulted in extension of the life span of HBECs, but differentiation capacity and CF transmembrane conductance regulator (CFTR) function decreased as a function of passage. This report details modifications to the standard HBEC CRC protocol (Mod CRC), including the use of bronchial epithelial cell growth medium, instead of F medium, and 2% O2, instead of 21% O2, that extend HBEC life span while preserving multipotent differentiation capacity and CFTR function. Critically, Mod CRC conditions support clonal growth of primary HBECs from a single cell, and the resulting clonal HBEC population maintains multipotent differentiation capacity, including CFTR function, permitting gene editing of these cells. As a proof-of-concept, CRISPR/Cas9 genome editing and cloning were used to introduce insertions/deletions in CFTR exon 11. Mod CRC conditions overcome many barriers to the expanded use of HBECs for basic research and drug screens. Importantly, Mod CRC conditions support the creation of isogenic cell lines in which CFTR is mutant or wild-type in the same genetic background with no history of CF to enable determination of the primary defects of mutant CFTR.

Brônquios/metabolismo , Diferenciação Celular , Fibrose Cística/metabolismo , Células-Tronco Multipotentes/metabolismo , Células 3T3 , Animais , Brônquios/patologia , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Reprogramação Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística , Edição de Genes , Humanos , Camundongos , Células-Tronco Multipotentes/patologia , Fatores de Tempo
Tissue Eng Part A ; 24(7-8): 559-568, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28726588


We developed methods for conditionally reprogramming (CR) primary human bronchial epithelial cells (HBECs) to extend their functional lifespan and permit their differentiation into both upper and lower airway lung epithelium. We also developed a bioreactor to support vascular perfusion and rhythmic breathing of decellularized mouse lungs reconstituted with CR HBECs isolated from patients with and without cystic fibrosis (CF). While conditionally reprogrammed cells only differentiate into an upper airway epithelium after 35 days at the air-liquid interface, in reconstituted lungs these cells differentiate into upper airway bronchial epithelium and lower airway alveolar structures after 12 days. Rapid scale-up and the ability to obtain clonal derivatives of primary patient-derived HBECs without the need for genetic manipulation may permit rapid reconstitution of the lung epithelium; facilitating the study of lung disease in tissue-engineered models.

Brônquios/citologia , Células Epiteliais/citologia , Pulmão/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Camundongos , Engenharia Tecidual