Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Monit Assess ; 193(10): 649, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34523031


The present study aims to assess the recent changes and trends in the extreme climate indices in the Kashmir basin using the observational records from 1980 to 2016. The extreme climate indices were computed using the ClimPACT2 software and a total of 39 indices were selected for the analysis having particular utility to various sectors like agriculture, water resources, energy consumption, and human health. Besides adopting the station scale analysis, regional averages were computed for each index. In terms of the mean climatology, an increase has been observed in the annual mean temperature with a magnitude of 0.024 °C/year. Further, differential warming patterns have been observed in the mean maximum and minimum temperatures with mean maximum temperature revealing higher increases than mean minimum temperature. On the other hand, the annual precipitation shows a decrease over most of the region, and the decreases are more pronouncing in the higher altitudes. The trend analysis of the extreme indices reveals that in consonance with the rising temperature there has been an increase in the warm temperatures and decrease in the cold temperatures across the Kashmir basin. Furthermore, our analysis suggests a decrease in the extreme precipitation events. The drought indices viz., Standardised Precipitation Index (SPI), and Standardised Precipitation Evapotranspiration Index (SPEI) manifest decreasing trends with the tendency towards drier regimes implying the need for better water resource management in the region under changing climate.

Mudança Climática , Monitoramento Ambiental , Secas , Humanos , Meteorologia , Temperatura
ACS Omega ; 5(8): 4250-4260, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149255


A set of unique triptycene-based and organic Schiff-base-linked polymers (TBOSBLs) are conveniently synthesized in which triptycene motifs are connected with 1,3,5-triformylphloroglucinol units via Schiff-base linkages. TBOSBLs are amorphous, thermally stable with a reasonable surface area (SABET up to 649 m2/g), and have abundant nanopores (pore size < 100 nm). TBOSBLs are good sorbents for small gas molecules (such as CO2, H2, and N2) and they can selectively capture CO2 over N2. Additionally, TBOSBLs show superior antiproliferative activity against human colorectal cancer cells relative to previously reported covalent organic frameworks (COFs). The mechanism of cell death is also studied elaborately.

Sci Total Environ ; 722: 137875, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32199381


In September 2014, the Kashmir valley (north-west India) experienced a massive flood causing significant economic losses and fatalities. This disaster underlined the high vulnerability of the local population and raised questions regarding the resilience of Kashmiris to future floods. Although the magnitude of the 2014 flood has been considered unprecedented within the context of existing measurements, we argue that the short flow series may lead to spurious misinterpretation of the probability of such extreme events. Here we use a millennium-long record of past floods in Kashmir based on historical and tree-ring records to assess the probability of 2014-like flood events in the region. Our flood chronology (635 CE-nowadays) provides key insights into the recurrence of flood disasters and propels understanding of flood variability in this region over the last millennium, showing enhanced activity during the Little Ice Age. We find that high-impact floods have frequently disrupted the Kashmir valley in the past. Thus, the inclusion of historical records reveals large flood hazard levels in the region. The newly gained information also underlines the critical need to take immediate action in the region, so as to reduce the exposure of local populations and to increase their resilience, despite existing constraints in watershed management related to the Indus Water Treaty.

Desastres , Inundações , Previsões , Probabilidade
Sci Total Environ ; 704: 135360, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31836211


Bangladesh has a long history of devastating tropical cyclones. In view of the effects of the storms on the country, risk assessment is essential for devising the mitigation strategies at various levels. By way of bringing the conceptual structure of general risk model in practice, this work aims to examine the spatial patterns of cyclone risk in the Cox's Bazar district (I) and Rohingya refugee camps (II) located on the southeastern coast of Bangladesh. We use 14 parameters representing the hazard, exposure, and vulnerability as the components of risk. The selected parameters were analyzed and integrated though the complementary use of Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) for depicting the cyclone risk situation comprehensively at both the spatial scales. The status of the cyclone risk was identified and quantified as very high (6.84%, 3.43%), high (45.78%, 27.82%), moderate (5.97%, 39.42%), low (40.62%, 28.70%), and very low (0.81%, 0.61%) for the spatial scale I and II respectively. In general, northwestern and southern peripheral areas exhibited higher risk than the central and northeastern parts of the Cox's Bazar district; and in the refugee settlements, camp number 1E, 1W, 7, and 13 revealed relatively higher levels of the risk. The results of the assessment (I) were correlated with experiential damage from the 1991 cyclone; a reasonable consistency was noticed between the simulated scenario and the observed impacts. We assume that the deliverables of this spatial analysis could be useful to stakeholders while formulating the cyclone risk mitigation policies for the region. Furthermore, this work demonstrates that the applied method would deliver reliable results if tested in other coastal environments.

Disasters ; 44(1): 232, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31231839


The above article from Disasters, published online on 24 June 2019 in Wiley Online Library ( has been withdrawn by agreement between the authors, the Journal Editors, Sara Pantuliano, John Twigg, Helen Young and Matthew Foley, and John Wiley & Sons Ltd., on behalf of Overseas Development Institute. Reference Ahmad, B., Alam, A., Bhat, M. S. and Bhat, K. A. (2019), Reconstructing disasters and adaptation scenario of nineteenth-century Kashmir. Disasters. Accepted Author Manuscript. doi:10.1111/disa.12364.