Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Front Immunol ; 10: 1880, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440254

RESUMO

Mixed Connective Tissue Disease (MCTD) is a rare complex systemic autoimmune disease (SAD) characterized by the presence of increased levels of anti-U1 ribonucleoprotein autoantibodies and signs and symptoms that resemble other SADs such as systemic sclerosis (SSc), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Due to its low prevalence, this disease has been very poorly studied at the molecular level. We performed for the first time an epigenome-wide association study interrogating DNA methylation data obtained with the Infinium MethylationEPIC array from whole blood samples in 31 patients diagnosed with MCTD and 255 healthy subjects. We observed a pervasive hypomethylation involving 170 genes enriched for immune-related function such as those involved in type I interferon signaling pathways or in negative regulation of viral genome replication. We mostly identified epigenetic signals at genes previously implicated in other SADs, for example MX1, PARP9, DDX60, or IFI44L, for which we also observed that MCTD patients exhibit higher DNA methylation variability compared with controls, suggesting that these sites might be involved in plastic immune responses that are relevant to the disease. Through methylation quantitative trait locus (meQTL) analysis we identified widespread local genetic effects influencing DNA methylation variability at MCTD-associated sites. Interestingly, for IRF7, IFI44 genes, and the HLA region we have evidence that they could be exerting a genetic risk on MCTD mediated through DNA methylation changes. Comparison of MCTD-associated epigenome with patients diagnosed with SLE, or Sjögren's Syndrome, reveals a common interferon-related epigenetic signature, however we find substantial epigenetic differences when compared with patients diagnosed with rheumatoid arthritis and systemic sclerosis. Furthermore, we show that MCTD-associated CpGs are potential epigenetic biomarkers with high diagnostic value. Our study serves to reveal new genes and pathways involved in MCTD, to illustrate the important role of epigenetic modifications in MCTD pathology, in mediating the interaction between different genetic and environmental MCTD risk factors, and as potential biomarkers of SADs.

2.
Curr Opin Rheumatol ; 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31436585

RESUMO

PURPOSE OF REVIEW: The aim of this study is to update on the most recent findings on the genetics of systemic lupus erythematosus. RECENT FINDINGS: Our overview focuses particularly on results from expression quantitative trait loci, exome sequencing, and rare variants and their impact on disease. SUMMARY: Systemic lupus erythematosus is a systemic autoimmune disease for which a significant number of susceptibility genes have been identified. Several genome-wide association studies were recently published in different populations that provide a better picture of the molecular mechanisms. It is becoming clear that the genetic architecture of lupus is quite well established but more information is required on the role of rare variants.

4.
Front Immunol ; 10: 1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31169830

RESUMO

Objectives: This study, developed within the Innovative Medicines Initiative Joint Undertaking project PRECISESADS framework, aimed at functionally characterize the monocyte subsets in RA patients, and analyze their involvement in the increased CV risk associated with RA. Methods: The frequencies of monocyte subpopulations in the peripheral blood of 140 RA patients and 145 healthy donors (HDs) included in the PRECISESADS study were determined by flow cytometry. A second cohort of 50 RA patients and 30 HDs was included, of which CD14+ and CD16+ monocyte subpopulations were isolated using immuno-magnetic selection. Their transcriptomic profiles (mRNA and microRNA), proinflammatory patterns and activated pathways were evaluated and related to clinical features and CV risk. Mechanistic in vitro analyses were further performed. Results: CD14++CD16+ intermediate monocytes were extended in both cohorts of RA patients. Their increased frequency was associated with the positivity for autoantibodies, disease duration, inflammation, endothelial dysfunction and the presence of atheroma plaques, as well as with the CV risk score. CD14+ and CD16+ monocyte subsets showed distinctive and specific mRNA and microRNA profiles, along with specific intracellular signaling activation, indicating different functionalities. Moreover, that specific molecular profiles were interrelated and associated to atherosclerosis development and increased CV risk in RA patients. In vitro, RA serum promoted differentiation of CD14+CD16- to CD14++CD16+ monocytes. Co-culture with RA-isolated monocyte subsets induced differential activation of endothelial cells. Conclusions: Our overall data suggest that the generation of inflammatory monocytes is associated to the autoimmune/inflammatory response that mediates RA. These monocyte subsets, -which display specific and distinctive molecular signatures- might promote endothelial dysfunction and in turn, the progression of atherosclerosis through a finely regulated process driving CVD development in RA.

5.
Cell Mol Immunol ; 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243359

RESUMO

Evidence supports a possible role of BANK1 in innate immune signaling in B cells. In the present study, we investigated the interaction of BANK1 with two key mediators in interferon and inflammatory cytokine production, TRAF6 and MyD88. We revealed by coimmunoprecipitation (CoIP) analyses the binding of BANK1 with TRAF6 and MyD88, which were mediated by the BANK1 Toll/interleukin-1 receptor (TIR) domain. In addition, the natural BANK1-40C variant showed increased binding to MyD88. Next, we demonstrated in mouse splenic B cells that BANK1 colocalized with Toll-like receptor (TLR) 7 and TLR9 and that after stimulation with TLR7 and TLR9 agonists, the number of double-positive BANK1-TLR7, -TLR9, -TRAF6, and -MyD88 cells increased. Furthermore, we identified five TRAF6-binding motifs (BMs) in BANK1 and confirmed by point mutations and decoy peptide experiments that the C-terminal domain of BANK1-full-length (-FL) and the N-terminal domain of BANK1-Delta2 (-D2) are necessary for this binding. Functionally, we determined that the absence of the TIR domain in BANK1-D2 is important for its lysine (K)63-linked polyubiquitination and its ability to produce interleukin (IL)-8. Overall, our study describes a specific function of BANK1 in MyD88-TRAF6 innate immune signaling in B cells, clarifies functional differences between the two BANK1 isoforms and explains for the first time a functional link between autoimmune phenotypes including SLE and the naturally occurring BANK1-40C variant.

6.
Front Immunol ; 10: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863397

RESUMO

The importance of low frequency and rare variation in complex disease genetics is difficult to estimate in patient populations. Genome-wide association studies are therefore, underpowered to detect rare variation. We have used a combined approach of genome-wide-based imputation with a highly stringent sequence kernel association (SKAT) test and a case-control burden test. We identified 98 candidate genes containing rare variation that in aggregate show association with SLE many of which have recognized immunological function, but also function and expression related to relevant tissues such as the joints, skin, blood or central nervous system. In addition we also find that there is a significant enrichment of genes annotated for disease-causing mutations in the OMIM database, suggesting that in complex diseases such as SLE, such mutations may be involved in subtle or combined phenotypes or could accelerate specific organ abnormalities found in the disease. We here provide an important resource of candidate genes for SLE.

7.
Curr Rheumatol Rep ; 21(4): 11, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30806825

RESUMO

PURPOSE OF REVIEW: The purpose is to discuss the advances that genetics and genomics have provided to better understand the molecular mechanisms behind SLE and how to solve its heterogeneity. I propose new ideas that can help us stratify lupus in order to find the best therapies for each patient, and the idea of substituting clinical diagnosis with molecular diagnosis according to their molecular patterns, an idea that may not only include lupus but also other diseases. RECENT FINDINGS: The study of rare mutations may provide insight into groups of lupus patients where type I interferon signature is important and help understand those with an atypical clinical presentation. Recent papers used longitudinal blood transcriptome data correlating with disease activity scores to stratify lupus into molecular clusters. The implication of neutrophils in the risk to develop nephritis was established, but also that neutrophils and lymphocytes may correlate with activity differentiating the mechanisms of flares and separating patients into clinically separate groups. The role of type I interferon signature is important; however, the stratification of SLE patients according to the genes and cellular compartments being modulated during disease activity may be even more important to define those patients who may benefit the most with new anti-type I IFN receptor therapies.

8.
J Pharm Biomed Anal ; 162: 82-90, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30227356

RESUMO

Systemic Sclerosis (SSc) is a chronic autoimmune disease whose origin and pathogenesis are not yet well known. Recent studies are allowing a better definition of the disease. However, few studies have been performed based on metabolomics. In this way, this study aims to find altered metabolites in SSc patients in order to improve their diagnosis, prognosis and treatment. For that, 59 SSc patients and 28 healthy volunteers participated in this study. Urine and plasma samples were analysed by a fingerprinting metabolomic approach based on HPLC-ESI-QTOF-MS. We observed larger differences in urine than plasma metabolites. The main deregulated metabolic families in urine were acylcarnitines, acylglycines and metabolites derived from amino acids, specifically from proline, histidine and glutamine. These results indicate perturbations in fatty acid beta oxidation and amino acid pathways in scleroderma patients. On the other hand, the main plasma biomarker candidate was 2-arachidonoylglycerol, which is involved in the endocannabinoid system with potential implications in the induction and propagation of systemic sclerosis and autoimmunity.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Metabolômica/métodos , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/urina , Espectrometria de Massas por Ionização por Electrospray , Acilação , Adulto , Idoso , Ácidos Araquidônicos/sangue , Ácidos Araquidônicos/urina , Carnitina/análogos & derivados , Carnitina/sangue , Carnitina/urina , Estudos de Casos e Controles , Endocanabinoides/sangue , Endocanabinoides/urina , Feminino , Glicerídeos/sangue , Glicerídeos/urina , Glicina/sangue , Glicina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Escleroderma Sistêmico/diagnóstico , Urinálise
9.
Hum Mol Genet ; 27(21): 3813-3824, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085094

RESUMO

Genetic variation within the major histocompatibility complex (MHC) contributes substantial risk for systemic lupus erythematosus, but high gene density, extreme polymorphism and extensive linkage disequilibrium (LD) have made fine mapping challenging. To address the problem, we compared two association techniques in two ancestrally diverse populations, African Americans (AAs) and Europeans (EURs). We observed a greater number of Human Leucocyte Antigen (HLA) alleles in AA consistent with the elevated level of recombination in this population. In EUR we observed 50 different A-C-B-DRB1-DQA-DQB multilocus haplotype sequences per hundred individuals; in the AA sample, these multilocus haplotypes were twice as common compared to Europeans. We also observed a strong narrow class II signal in AA as opposed to the long-range LD observed in EUR that includes class I alleles. We performed a Bayesian model choice of the classical HLA alleles and a frequentist analysis that combined both single nucleotide polymorphisms (SNPs) and classical HLA alleles. Both analyses converged on a similar subset of risk HLA alleles: in EUR HLA- B*08:01 + B*18:01 + (DRB1*15:01 frequentist only) + DQA*01:02 + DQB*02:01 + DRB3*02 and in AA HLA-C*17:01 + B*08:01 + DRB1*15:03 + (DQA*01:02 frequentist only) + DQA*02:01 + DQA*05:01+ DQA*05:05 + DQB*03:19 + DQB*02:02. We observed two additional independent SNP associations in both populations: EUR rs146903072 and rs501480; AA rs389883 and rs114118665. The DR2 serotype was best explained by DRB1*15:03 + DQA*01:02 in AA and by DRB1*15:01 + DQA*01:02 in EUR. The DR3 serotype was best explained by DQA*05:01 in AA and by DQB*02:01 in EUR. Despite some differences in underlying HLA allele risk models in EUR and AA, SNP signals across the extended MHC showed remarkable similarity and significant concordance in direction of effect for risk-associated variants.

10.
Bioinformatics ; 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30137226

RESUMO

Summary: The Gene Expression Omnibus (GEO) database provides an invaluable resource of publicly available gene expression data that can be integrated and analyzed to derive new hypothesis and knowledge. In this context, gene expression meta-analysis is increasingly used in several fields to improve study reproducibility and discovering robust biomarkers. Nevertheless, integrating data is not straightforward without bioinformatics expertise. Here, we present ImaGEO, a web tool for gene expression meta-analysis that implements a complete and comprehensive meta-analysis workflow starting from GEO dataset identifiers. The application integrates GEO datasets, applies different meta-analysis techniques and provides functional analysis results in an easy-to-use environment. ImaGEO is a powerful and useful resource that allows researchers to integrate and perform meta-analysis of GEO datasets to lead robust findings for biomarker discovery studies. Availability: ImaGEO is accessible at http://bioinfo.genyo.es/imageo/. Supplementary information: Online-only Supplementary data available at the journal's web site.

11.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096841

RESUMO

BANK1 is a susceptibility gene for several systemic autoimmune diseases in several populations. Using the genome-wide association study (GWAS) data from Europeans (EUR) and African Americans (AA), we performed an extensive fine mapping of ankyrin repeats 1 (BANK1). To increase the SNP density, we used imputation followed by univariate and conditional analysis, combined with a haplotypic and expression quantitative trait locus (eQTL) analysis. The data from Europeans showed that the associated region was restricted to a minimal and dependent set of SNPs covering introns two and three, and exon two. In AA, the signal found in the Europeans was split into two independent effects. All of the major risk associated SNPs were eQTLs, and the risks were associated with an increased BANK1 gene expression. Functional annotation analysis revealed the enrichment of repressive B cell epigenomic marks (EZH2 and H3K27me3) and a strong enrichment of splice junctions. Furthermore, one eQTL located in intron two, rs13106926, was found within the binding site for RUNX3, a transcriptional activator. These results connect the local genome topography, chromatin structure, and the regulatory landscape of BANK1 with co-transcriptional splicing of exon two. Our data defines a minimal set of risk associated eQTLs predicted to be involved in the expression of BANK1 modulated through epigenetic regulation and splicing. These findings allow us to suggest that the increased expression of BANK1 will have an impact on B-cell mediated disease pathways.

12.
PLoS One ; 13(6): e0199003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953444

RESUMO

OBJECTIVE: African Americans, East Asians, and Hispanics with systemic lupus erythematous (SLE) are more likely to develop lupus nephritis (LN) than are SLE patients of European descent. The etiology of this difference is not clear, and this study was undertaken to investigate how genetic variants might explain this effect. METHODS: In this cross-sectional study, 1244 SLE patients from multiethnic case collections were genotyped for 817,810 single-nucleotide polymorphisms (SNPs) across the genome. Continental genetic ancestry was estimated utilizing the program ADMIXTURE. Gene-based testing and pathway analysis was performed within each ethnic group and meta-analyzed across ethnicities. We also performed candidate SNP association tests with SNPs previously established as risk alleles for SLE, LN, and chronic kidney disease (CKD). Association testing and logistic regression models were performed with LN as the outcome, adjusted for continental ancestries, sex, disease duration, and age. RESULTS: We studied 255 North European, 263 South European, 238 Hispanic, 224 African American and 264 East Asian SLE patients, of whom 606 had LN (48.7%). In genome-wide gene-based and candidate SNP analyses, we found distinct genes, pathways and established risk SNPs associated with LN for each ethnic group. Gene-based analyses showed significant associations between variation in ZNF546 (p = 1.0E-06), TRIM15 (p = 1.0E-06), and TRIMI0 (p = 1.0E-06) and LN among South Europeans, and TTC34 (p = 8.0E-06) was significantly associated with LN among Hispanics. The SNP rs8091180 in NFATC1 was associated with LN (OR 1.43, p = 3.3E-04) in the candidate SNP meta-analysis with the highest OR among African-Americans (OR 2.17, p = 0.0035). CONCLUSION: Distinct genetic factors are associated with the risk of LN in SLE patients of different ethnicities. CKD risk alleles may play a role in the development of LN in addition to SLE-associated risk variants. These findings may further explain the clinical heterogeneity of LN risk and response to therapy observed between different ethnic groups.

13.
Arthritis Rheumatol ; 70(12): 2025-2035, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29938934

RESUMO

OBJECTIVE: The highly heterogeneous clinical presentation of systemic lupus erythematosus (SLE) is characterized by the unpredictable occurrence of disease flares and organ damage. Attempts to stratify lupus patients have been limited to classification based on clinical information, leading to unsuccessful clinical trials and controversial research results. This study was undertaken to develop and validate a robust method to stratify patients with lupus according to longitudinal disease activity and whole-genome gene expression data in order to establish subgroups of patients who share disease progression mechanisms. METHODS: We used a cluster-based approach to stratify SLE patients based on the correlation between disease activity scores and longitudinal gene expression information. Clustering robustness was evaluated by the bootstrap method, and the clusters were characterized in terms of clinical and functional features. RESULTS: We observed a clear partition into 3 different disease clusters in 2 independent sets of patients, one pediatric and one adult, which was not influenced by treatment, race, or other source of bias. Two of the clusters differentiated into a group showing a correlation between the percentage of neutrophils and disease activity progression and a group showing a correlation between the percentage of lymphocytes and disease activity progression. The third cluster, in which the percentage of neutrophils correlated to a lesser degree with disease activity, was functionally more heterogeneous. Patients in the neutrophil-driven clusters had an increased risk of developing proliferative nephritis. CONCLUSION: Our findings indicate that SLE patients can be stratified into 3 subgroups of patients who show different mechanisms of disease progression and are clinically differentiated. Our results have important implications for treatment options, the design of clinical trials, our understanding of the etiology of the disease, and the prediction of severe glomerulonephritis.

14.
Sci Rep ; 8(1): 8775, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884787

RESUMO

In an effort to identify rare alleles associated with SLE, we have performed whole exome sequencing of the most distantly related affected individuals from two large Icelandic multicase SLE families followed by Ta targeted genotyping of additional relatives. We identified multiple rare likely pathogenic variants in nineteen genes co-segregating with the disease through multiple generations. Gene co-expression and protein-protein interaction analysis identified a network of highly connected genes comprising several loci previously implicated in autoimmune diseases. These genes were significantly enriched for immune system development, lymphocyte activation, DNA repair, and V(D)J gene recombination GO-categories. Furthermore, we found evidence of aggregate association and enrichment of rare variants at the FAM71E1/EMC10 locus in an independent set of 4,254 European SLE-cases and 4,349 controls. Our study presents evidence supporting that multiple rare likely pathogenic variants, in newly identified genes involved in known disease pathogenic pathways, segregate with SLE at the familial and population level.

15.
Clin Immunol ; 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29605707

RESUMO

Epigenetics is known to be an important mechanism in the pathogenesis of autoimmune diseases. Epigenetic variations can act as integrators of environmental and genetic exposures and propagate activated states in immune cells. Studying epigenetic alterations by means of genome-wide approaches promises to unravel novel molecular mechanisms related to disease etiology, disease progression, clinical manifestations and treatment responses. This paper reviews what we have learned in the last five years from epigenome-wide studies for three systemic autoimmune diseases, namely systemic lupus erythematosus, primary Sjögren's syndrome, and rheumatoid arthritis. We examine the degree of epigenetic sharing between different diseases and the possible mediating role of epigenetic associations in genetic and environmental risks. Finally, we also shed light into the use of epigenetic markers towards a better precision medicine regarding disease prediction, prevention and personalized treatment in systemic autoimmunity.

16.
Nat Rev Rheumatol ; 14(3): 180, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29463931

RESUMO

This corrects the article DOI: 10.1038/nrrheum.2017.220.

17.
Nat Rev Rheumatol ; 14(2): 75-93, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29362467

RESUMO

Autoimmune rheumatic diseases pose many problems that have, in general, already been solved in the field of cancer. The heterogeneity of each disease, the clinical similarities and differences between different autoimmune rheumatic diseases and the large number of patients that remain without a diagnosis underline the need to reclassify these diseases via new approaches. Knowledge about the molecular basis of systemic autoimmune diseases, along with the availability of bioinformatics tools capable of handling and integrating large volumes of various types of molecular data at once, offer the possibility of reclassifying these diseases. A new taxonomy could lead to the discovery of new biomarkers for patient stratification and prognosis. Most importantly, this taxonomy might enable important changes in clinical trial design to reach the expected outcomes or the design of molecularly targeted therapies. In this Review, we discuss the basis for a new molecular taxonomy for autoimmune rheumatic diseases. We highlight the evidence surrounding the idea that these diseases share molecular features related to their pathogenesis and development and discuss previous attempts to classify these diseases. We evaluate the tools available to analyse and combine different types of molecular data. Finally, we introduce PRECISESADS, a project aimed at reclassifying the systemic autoimmune diseases.

19.
BMC Bioinformatics ; 18(1): 563, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246109

RESUMO

BACKGROUND: Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. RESULTS: We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. CONCLUSIONS: MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .


Assuntos
Estudos de Associação Genética/métodos , Internet , Metagenômica/métodos , Software , Humanos
20.
Best Pract Res Clin Rheumatol ; 31(3): 291-305, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29224672

RESUMO

The implementation of precision medicine requires the recruiting of patients in statistically enough numbers, the possibility of obtaining enough materials, and the integration of data from various platforms, which are all real limitations. These types of studies have been performed extensively in cancer but barely on systemic lupus erythematosus (SLE) or other rheumatic diseases. To consider the practical use of the information obtained from such studies, we have to take into account the best biological fluid to use, the ease to perform the analysis in clinical practice, and its relevance to clinical practice. Here we review the most relevant studies that have performed analyses that attempt to classify or stratify SLE. We focus on two types of studies: those that stratify individuals diagnosed with SLE and those that compare SLE with other autoimmune diseases, defining differences and similarities that may be clinically relevant in the future.


Assuntos
Doenças Autoimunes/genética , Epigenômica/métodos , Lúpus Eritematoso Sistêmico/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA