Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Clin Genet ; 96(3): 246-253, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31090057

RESUMO

Two distinct genomic disorders have been linked to Xq28-gains, namely Xq28-duplications including MECP2 and Int22h1/Int22h2-mediated duplications involving RAB39B. Here, we describe six unrelated patients, five males and one female, with Xq28-gains distal to MECP2 and proximal to the Int22h1/Int22h2 low copy repeats. Comparison with patients carrying overlapping duplications in the literature defined the MidXq28-duplication syndrome featuring intellectual disability, language impairment, structural brain malformations, microcephaly, seizures and minor craniofacial features. The duplications overlapped for 108 kb including FLNA, RPL10 and GDI1 genes, highly expressed in brain and candidates for the neurologic phenotype.

2.
Cell ; 176(3): 505-519.e22, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612738

RESUMO

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.

3.
Hum Genet ; 137(9): 753-768, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167850

RESUMO

NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.


Assuntos
Proteínas de Transporte/genética , Canalopatias/genética , Deficiências do Desenvolvimento/genética , Marcadores Genéticos , Variação Genética , Proteínas de Membrana/genética , Canais de Sódio/genética , Adolescente , Adulto , Canalopatias/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Adulto Jovem
4.
Am J Hum Genet ; 102(3): 468-479, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429572

RESUMO

Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity.

5.
Mol Psychiatry ; 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302074

RESUMO

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.

6.
Mol Genet Genomic Med ; 5(6): 668-677, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29178649

RESUMO

BACKGROUND: Maternal uniparental disomy of chromosome 6 (upd(6)mat) is a rare finding and its clinical relevance is currently unclear. Based on clinical data from two new cases and patients from the literature, the pathogenetic significance of upd(6)mat is delineated. METHODS: Own cases were molecularly characterized for isodisomic uniparental regions on chromosome 6. For further cases with upd(6)mat, a literature search was conducted and genetic and clinical data were ascertained. RESULTS: Comparison of isodisomic regions between the new upd(6)mat cases and those from four reports did not reveal any common isodisomic region. Among the patients with available cytogenetic data, five had a normal karyotype in lymphocytes, whereas a trisomy 6 (mosaicism) was detected prenatally in four cases. A common clinical picture was not obvious in upd(6)mat, but intrauterine growth restriction (IUGR) and preterm delivery were frequent. CONCLUSION: A common upd(6)mat phenotype is not obvious, but placental dysfunction due to trisomy 6 mosaicism probably contributes to IUGR and preterm delivery. In fact, other clinical features observed in upd(6)mat patients might be caused by homozygosity of recessive mutations or by an undetected trisomy 6 cell line. Upd(6)mat itself is not associated with clinical features, and can rather be regarded as a biomarker. In case upd(6)mat is detected, the cause for the phenotype is identified indirectly, but the UPD is not the basic cause.


Assuntos
Cromossomos Humanos Par 6 , Placenta/metabolismo , Trissomia/diagnóstico , Dissomia Uniparental/patologia , Biomarcadores/metabolismo , Proteínas Culina/genética , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Testes Genéticos , Humanos , Recém-Nascido , Cariótipo , Masculino , Mosaicismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Nascimento Prematuro , Esteroide 21-Hidroxilase/genética , Trissomia/genética , Dissomia Uniparental/genética
7.
Brain ; 140(9): 2322-2336, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050398

RESUMO

De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/ß spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/ßII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup), all falling in the nucleation site of the α/ß spectrin heterodimer region. Molecular modelling of the seven SPTAN1 amino acid changes provided preliminary evidence for structural alterations of the A-, B- and/or C-helices within each of the mutated spectrin repeats. We conclude that SPTAN1-related disorders comprise a wide spectrum of neurodevelopmental phenotypes ranging from mild to severe and progressive. Spectrin aggregate formation in fibroblasts with mutations in the α/ß heterodimerization domain seems to be associated with a severe neurodegenerative course and suggests that the amino acid stretch from Asp2303 to Met2309 in the α20 repeat is important for α/ß spectrin heterodimer formation and/or αII spectrin function.


Assuntos
Encefalopatias/genética , Encéfalo/patologia , Proteínas de Transporte/genética , Epilepsia/genética , Proteínas dos Microfilamentos/genética , Adolescente , Atrofia/complicações , Atrofia/patologia , Encéfalo/anormalidades , Encefalopatias/complicações , Proteínas de Transporte/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Progressão da Doença , Epilepsia/complicações , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Mutação , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Agregação Patológica de Proteínas/metabolismo , Adulto Jovem
8.
Eur J Hum Genet ; 25(8): 935-945, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28635951

RESUMO

The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 14/genética , Metilação de DNA , Impressão Genômica , RNA Nucleolar Pequeno/genética , Adulto , Idoso , Transtornos Cromossômicos/diagnóstico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/metabolismo
9.
Am J Med Genet A ; 173(2): 435-443, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862890

RESUMO

Loss-of-function mutations and deletions of the SOX2 gene are known to cause uni- and bilateral anophthalmia and microphthalmia as well as related disorders such as anophthalmia-esophageal-genital syndrome. Thus, anophthalmia/microphthalmia is the primary indication for targeted, "phenotype first" analyses of SOX2. However, SOX2 mutations are also associated with a wide range of non-ocular abnormalities, such as postnatal growth retardation, structural brain anomalies, hypogenitalism, and developmental delay. The present report describes three patients without anophthalmia/microphthalmia and loss-of-function mutations or microdeletions of SOX2 who had been investigated in a "genotype first" manner due to intellectual disability/developmental delay using whole exome sequencing or chromosomal microarray analyses. This result prompted us to perform SOX2 Sanger sequencing in 192 developmental delay/intellectual disability patients without anophthalmia or microphthalmia. No additional SOX2 loss-of-function mutations were detected in this cohort, showing that SOX2 is clearly not a major cause of intellectual disability without anophthalmia/microphthalmia. In our three patients and four further, reported "genotype first" SOX2 microdeletion patients, anophthalmia/microphthalmia was present in less than half of the patients. Thus, SOX2 is another example of a gene whose clinical spectrum is broadened by the generation of "genotype first" findings using hypothesis-free, genome-wide methods. © 2016 Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fenótipo , Mutação Puntual , Fatores de Transcrição SOXB1/genética , Deleção de Sequência , Encéfalo/anormalidades , Pré-Escolar , Hibridização Genômica Comparativa , Exoma , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Facies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Imagem por Ressonância Magnética/métodos , Masculino , Polimorfismo de Nucleotídeo Único , Sistema de Registros
10.
Am J Hum Genet ; 99(5): 1181-1189, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773428

RESUMO

Cobblestone lissencephaly (COB) is a severe brain malformation in which overmigration of neurons and glial cells into the arachnoid space results in the formation of cortical dysplasia. COB occurs in a wide range of genetic disorders known as dystroglycanopathies, which are congenital muscular dystrophies associated with brain and eye anomalies and range from Walker-Warburg syndrome to Fukuyama congenital muscular dystrophy. Each of these conditions has been associated with alpha-dystroglycan defects or with mutations in genes encoding basement membrane components, which are known to interact with alpha-dystroglycan. Our screening of a cohort of 25 families with recessive forms of COB identified six families affected by biallelic mutations in TMTC3 (encoding transmembrane and tetratricopeptide repeat containing 3), a gene without obvious functional connections to alpha-dystroglycan. Most affected individuals showed brainstem and cerebellum hypoplasia, as well as ventriculomegaly. However, the minority of the affected individuals had eye defects or elevated muscle creatine phosphokinase, separating the TMTC3 COB phenotype from typical congenital muscular dystrophies. Our data suggest that loss of TMTC3 causes COB with minimal eye or muscle involvement.


Assuntos
Alelos , Proteínas de Transporte/genética , Lissencefalia Cobblestone/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , Membrana Basal/metabolismo , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Proteínas de Transporte/metabolismo , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Lissencefalia Cobblestone/diagnóstico por imagem , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Distroglicanas/metabolismo , Anormalidades do Olho/diagnóstico por imagem , Anormalidades do Olho/genética , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Neuroglia/metabolismo , Neurônios/patologia , Linhagem , Fenótipo
11.
J Med Genet ; 53(3): 152-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26543203

RESUMO

BACKGROUND: SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. METHODS: We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. RESULTS: We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin-Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. CONCLUSIONS: We thus propose that SOX11 deletion or mutation can present with a Coffin-Siris phenotype.


Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição SOXC/genética , Deleção de Sequência , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Face/fisiopatologia , Feminino , Técnicas de Silenciamento de Genes , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia , Micrognatismo/fisiopatologia , Pescoço/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Xenopus
12.
Am J Med Genet A ; 170A(1): 94-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26358559

RESUMO

The clinical diagnosis of Lujan-Fryns syndrome (LFS) comprises X-linked intellectual disability (XLID) with marfanoid habitus, distinct combination of minor facial anomalies and nasal speech. However the definition of syndrome was significantly broadened since the original report and implies ID with marfanoid habitus. Mutations of three genes (MED12, UPF3B, and ZDHHC9) have been reported in "broadly defined" LFS. We examined these genes in 28 individuals with a tentative clinical diagnosis of LFS but we did not identify any causative mutation. By molecular karyotyping we detected other disorders, i.e., Phelan-McDermid syndrome and 16p11.2 microduplication, each in one patient. One affected individual was carrier of a different recurrent duplication on 16p11.2 that has been reported several times to the DECIPHER and ISCA databases in individuals with autism, intellectual disability (ID), and developmental delay. It may represent a new duplication syndrome. We also identified previously unreported de novo duplication on chromosome 12p13.31 which we considered to be disease-causing. X-exome sequencing of four individuals revealed private or non-recurrent mutations in NKAP and LAS1L in one patient each. While LFS is defined as a form of XLID, there seem to be various conditions that have rather similar phenotypes. Therefore, the combination of ID and marfanoid habitus in a male patient is not sufficient for the diagnosis of LFS. We suggest that the diagnosis of LFS in patients with ID and marfanoid habitus should be made only in presence of specific facial features, nasal speech and obvious X-linked segregation of the disorder or an unambiguously pathogenic mutation in the MED12.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Craniofaciais/diagnóstico , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Síndrome de Marfan/diagnóstico , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Mutação/genética , Anormalidades Múltiplas/genética , Aciltransferases/genética , Anormalidades Craniofaciais/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/genética , Masculino , Síndrome de Marfan/genética , Complexo Mediador/genética , Retardo Mental Ligado ao Cromossomo X/genética , Linhagem , Proteínas de Ligação a RNA/genética
13.
Ann Clin Transl Neurol ; 2(5): 492-509, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26000322

RESUMO

OBJECTIVE: Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal-recessive ECHS1 deficiency. METHODS: Using exome sequencing, we identified ten unrelated individuals carrying compound heterozygous or homozygous mutations in ECHS1. Functional investigations in patient-derived fibroblast cell lines included immunoblotting, enzyme activity measurement, and a palmitate loading assay. RESULTS: Patients showed a heterogeneous phenotype with disease onset in the first year of life and course ranging from neonatal death to survival into adulthood. The most prominent clinical features were encephalopathy (10/10), deafness (9/9), epilepsy (6/9), optic atrophy (6/10), and cardiomyopathy (4/10). Serum lactate was elevated and brain magnetic resonance imaging showed white matter changes or a Leigh-like pattern resembling disorders of mitochondrial energy metabolism. Analysis of patients' fibroblast cell lines (6/10) provided further evidence for the pathogenicity of the respective mutations by showing reduced ECHS1 protein levels and reduced 2-enoyl-CoA hydratase activity. While serum acylcarnitine profiles were largely normal, in vitro palmitate loading of patient fibroblasts revealed increased butyrylcarnitine, unmasking the functional defect in mitochondrial ß-oxidation of short-chain fatty acids. Urinary excretion of 2-methyl-2,3-dihydroxybutyrate - a potential derivative of acryloyl-CoA in the valine catabolic pathway - was significantly increased, indicating impaired valine oxidation. INTERPRETATION: In conclusion, we define the phenotypic spectrum of a new syndrome caused by ECHS1 deficiency. We speculate that both the ß-oxidation defect and the block in l-valine metabolism, with accumulation of toxic methacrylyl-CoA and acryloyl-CoA, contribute to the disorder that may be amenable to metabolic treatment approaches.

14.
Hum Genet ; 134(6): 553-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724810

RESUMO

Coffin-Siris syndrome (CSS) and Nicolaides-Baraitser syndrome (NCBRS) are rare intellectual disability/congenital malformation syndromes that represent distinct entities but show considerable clinical overlap. They are caused by mutations in genes encoding members of the BRG1- and BRM-associated factor (BAF) complex. However, there are a number of patients with the clinical diagnosis of CSS or NCBRS in whom the causative mutation has not been identified. In this study, we performed trio-based whole-exome sequencing (WES) in ten previously described but unsolved individuals with the tentative diagnosis of CSS or NCBRS and found causative mutations in nine out of ten individuals. Interestingly, our WES analysis disclosed overlapping differential diagnoses including Wiedemann-Steiner, Kabuki, and Adams-Oliver syndromes. In addition, most likely causative de novo mutations were identified in GRIN2A and SHANK3. Moreover, trio-based WES detected SMARCA2 and SMARCA4 deletions, which had not been annotated in a previous Haloplex target enrichment and next-generation sequencing of known CSS/NCBRS genes emphasizing the advantages of WES as a diagnostic tool. In summary, we discuss the phenotypic and diagnostic challenges in clinical genetics, establish important differential diagnoses, and emphasize the cardinal features and the broad clinical spectrum of BAF complex disorders and other disorders caused by mutations in epigenetic landscapers.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Exoma , Face/anormalidades , Deformidades Congênitas do Pé/diagnóstico , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hipotricose/diagnóstico , Hipotricose/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Mutação , Pescoço/anormalidades , Adulto , Idoso de 80 Anos ou mais , Criança , DNA Helicases/genética , Diagnóstico Diferencial , Facies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores de N-Metil-D-Aspartato/genética , Fatores de Transcrição/genética
15.
Hum Genet ; 134(1): 97-109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326669

RESUMO

Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.


Assuntos
Deficiência Intelectual/genética , Microcefalia/genética , Mutação/genética , beta Catenina/genética , Criança , Pré-Escolar , Feminino , Seguimentos , Haploinsuficiência , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Fenótipo , Síndrome
16.
Eur J Hum Genet ; 23(3): 292-301, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25052316

RESUMO

Baraitser-Winter, Fryns-Aftimos and cerebrofrontofacial syndrome types 1 and 3 have recently been associated with heterozygous gain-of-function mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1 that encode ß- and γ-actins. We present detailed phenotypic descriptions and neuroimaging on 36 patients analyzed by our group and six cases from the literature with a molecularly proven actinopathy (9 ACTG1 and 33 ACTB). The major clinical anomalies are striking dysmorphic facial features with hypertelorism, broad nose with large tip and prominent root, congenital non-myopathic ptosis, ridged metopic suture and arched eyebrows. Iris or retinal coloboma is present in many cases, as is sensorineural deafness. Cleft lip and palate, hallux duplex, congenital heart defects and renal tract anomalies are seen in some cases. Microcephaly may develop with time. Nearly all patients with ACTG1 mutations, and around 60% of those with ACTB mutations have some degree of pachygyria with anteroposterior severity gradient, rarely lissencephaly or neuronal heterotopia. Reduction of shoulder girdle muscle bulk and progressive joint stiffness is common. Early muscular involvement, occasionally with congenital arthrogryposis, may be present. Progressive, severe dystonia was seen in one family. Intellectual disability and epilepsy are variable in severity and largely correlate with CNS anomalies. One patient developed acute lymphocytic leukemia, and another a cutaneous lymphoma, indicating that actinopathies may be cancer-predisposing disorders. Considering the multifaceted role of actins in cell physiology, we hypothesize that some clinical manifestations may be partially mutation specific. Baraitser-Winter cerebrofrontofacial syndrome is our suggested designation for this clinical entity.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Actinas/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Facies , Feminino , Ordem dos Genes , Loci Gênicos , Humanos , Masculino , Mutação , Fenótipo , Adulto Jovem
17.
Am J Hum Genet ; 95(6): 649-59, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25466284

RESUMO

Mesoaxial synostotic syndactyly, Malik-Percin type (MSSD) (syndactyly type IX) is a rare autosomal-recessive nonsyndromic digit anomaly with only two affected families reported so far. We previously showed that the trait is genetically distinct from other syndactyly types, and through autozygosity mapping we had identified a locus on chromosome 17p13.3 for this unique limb malformation. Here, we extend the number of independent pedigrees from various geographic regions segregating MSSD to a total of six. We demonstrate that three neighboring missense mutations affecting the highly conserved DNA-binding region of the basic helix-loop-helix A9 transcription factor (BHLHA9) are associated with this phenotype. Recombinant BHLHA9 generated by transient gene expression is shown to be located in the cytoplasm and the cell nucleus. Transcription factors 3, 4, and 12, members of the E protein (class I) family of helix-loop-helix transcription factors, are highlighted in yeast two-hybrid analysis as potential dimerization partners for BHLHA9. In the presence of BHLHA9, the potential of these three proteins to activate expression of an E-box-regulated target gene is reduced considerably. BHLHA9 harboring one of the three substitutions detected in MSSD-affected individuals eliminates entirely the transcription activation by these class I bHLH proteins. We conclude that by dimerizing with other bHLH protein monomers, BHLHA9 could fine tune the expression of regulatory factors governing determination of central limb mesenchyme cells, a function made impossible by altering critical amino acids in the DNA binding domain. These findings identify BHLHA9 as an essential player in the regulatory network governing limb morphogenesis in humans.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dedos/anormalidades , Mutação de Sentido Incorreto , Sindactilia/genética , Dedos do Pé/anormalidades , Sequência de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Dimerização , Feminino , Genes Reporter , Genótipo , Haplótipos , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Turquia , Adulto Jovem
19.
Eur J Hum Genet ; 22(2): 289-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23674175

RESUMO

Intellectual disability (ID) is frequent in the general population, with 1 in 50 individuals directly affected worldwide. The multiple etiologies include X-linked ID (XLID). Among syndromic XLID, few syndromes present severe ID associated with postnatal microcephaly and midline stereotypic hand movements. We report on three male patients with ID, midline stereotypic hand movements, hypotonia, hyperkinesia, strabismus, as well as seizures (2/3), and non-inherited and postnatal onset microcephaly (2/3). Using array CGH and exome sequencing we characterised two truncating mutations in IQSEC2, namely two de novo intragenic duplication mapped to the Xp11.22 region and a nonsense mutation in exon 7. We propose that truncating mutations in IQSEC2 are responsible for syndromic severe ID in male patients and should be screened in patients without mutations in MECP2, FOXG1, CDKL5 and MEF2C.


Assuntos
Anormalidades Múltiplas/diagnóstico , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/diagnóstico , Anormalidades Múltiplas/genética , Adulto , Pré-Escolar , Códon sem Sentido , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/classificação , Deficiência Intelectual/genética , Masculino , Fenótipo
20.
Neurology ; 81(19): 1697-703, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24107868

RESUMO

OBJECTIVES: To determine the frequency of KCNQ2 mutations in patients with neonatal epileptic encephalopathy (NEE), and to expand the phenotypic spectrum of KCNQ2 epileptic encephalopathy. METHODS: Eighty-four patients with unexplained NEE were screened for KCNQ2 mutations using classic Sanger sequencing. Clinical data of 6 additional patients with KCNQ2 mutations detected by gene panel were collected. Detailed phenotyping was performed with particular attention to seizure frequency, cognitive outcome, and video-EEG. RESULTS: In the cohort, we identified 9 different heterozygous de novo KCNQ2 missense mutations in 11 of 84 patients (13%). Two of 6 missense mutations detected by gene panel were recurrent and present in patients of the cohort. Seizures at onset typically consisted of tonic posturing often associated with focal clonic jerking, and were accompanied by apnea with desaturation. One patient diagnosed by gene panel had seizure onset at the age of 5 months. Based on seizure frequency at onset and cognitive outcome, we delineated 3 clinical subgroups, expanding the spectrum of KCNQ2 encephalopathy to patients with moderate intellectual disability and/or infrequent seizures at onset. Recurrent mutations lead to relatively homogenous phenotypes. One patient responded favorably to retigabine; 5 patients had a good response to carbamazepine. In 6 patients, seizures with bradycardia were recorded. One patient died of probable sudden unexpected death in epilepsy. CONCLUSION: KCNQ2 mutations cause approximately 13% of unexplained NEE. Patients present with a wide spectrum of severity and, although rare, infantile epilepsy onset is possible.


Assuntos
Predisposição Genética para Doença/genética , Canal de Potássio KCNQ2/genética , Mutação/genética , Espasmos Infantis/genética , Estudos de Coortes , Análise Mutacional de DNA , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA