Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 143: 104138, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32173495

RESUMO

Mushrooms have an important role in sustainability since they have long been used as valuable food source and traditional medicine around the world. Regrettably, they are among the most rigorously affected populations, along with several plants and animals, due to the destructive activities of mankind. Thus the authentication and conservation of mushroom species are constantly needed to exploit the remarkable potential in them. In this perspective, an attempt has been made to identify and assess the biological attributes of psychedelic mushrooms collected from Kodaikanal, Tamil Nadu, India. The macromorphological features of the psychedelic mushroom DPT1 helped its presumptive identification and the molecular characters depicted by DNA marker revealed its close relationship with the genus Psilocybe. Accordingly, the psychedelic mushroom was identified as Psilocybe cubensis DPT1 and its crude ethyl acetate extract on analysis revealed the occurrence of phytoconstituents like alkaloids, flavonoids, tannins, saponins and carbohydrates. Moreover, it exhibited 80% larvicidal activity against Culex quinquefasciatus mosquito at 800 ppm concentration and an array of antibacterial effects with utmost susceptibility of Proteus vulgaris, and the identification of bioactive compounds by different analytical techniques substantiate that the bioactivities might be due to the presence of phytochemicals. The results of the study indicated that the extract of P. cubensis DPT1 having notable antibacterial and mosquito larvicidal efficacies which could be probed further for the isolation of medicinally important as well as bio-control compounds.

2.
Microb Pathog ; 140: 103955, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31899325

RESUMO

Eleusine coracana (Finger millet) has high nutritional value with numerous health benefits and is of low cost. Isolation of beta-glucan (ßG) from E. coracana (Ec-ßG) has gained increasing research attention. UV-vis spectroscopy used to measure the surface plasmon resonance at 361 nm to confirm the presence of polysaccharides (glucan molecules) in Ec-ßG. X-ray diffraction analysis of Ec-ßG displayed a crystalline nature and confirmed the presence of the ßG molecule. Further, the bioactive compounds of Ec-ßG were screened using gas chromatography-mass spectrometry. The antibacterial activity of Ec-ßG against both Gram-positive (Lysinibacillus fusiformis, Enterococcus faecalis) and Gram-negative (Proteus vulgaris, Shigella sonnei) bacteria were assessed through minimum inhibitory concentrations <70 µg/ml of Ec-ßG. In addition, the antibiofilm activity and bacterial viability of Ec-ßG at 100 µg/ml was confirmed by light and confocal laser scanning microscopy. Furthermore, Ec-ßG inhibits α-amylase and α-glucosidase at an IC50 -value of 1.23 and 1.42 µg/ml, respectively. Superoxide anion scavenging activity at IC50-1.4 µg/ml and DPPH radical scavenging activity at IC50-1.2 µg/ml showed that Ec-ßG had potential antioxidant property. The in vitro hemolysis assay for biocompatibility of Ec-ßG at 200 µg/ml showed 0.06 ± 0.09%. Therefore, Ec-ßG has the potential to act as a suggestive agent for antibacterial, antidiabetic, and antioxidant activity.

3.
Carbohydr Polym ; 230: 115646, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887894

RESUMO

In this study graphene/chitosan nanoparticles (GR/CS NCs) were developed. The homogenous combination of GR and CS was confirmed by FTIR spectroscopy. The combination of CS with GR sheets reduced the XRD intensity of the GR peak in GR/CS NCs, while TEM images revealed the immobile CS coating of GR sheets. Further, the anti-biofilm activity of GR/CS NCs was tested. The tests showed that the formation of biofilm by Pseudomonas aeruginosa and Klebsiella pneumoniae was inhibited at 40□g/mL GR/CS NCs up to 94 and 92 %, respectively. The intracellular and cell surface damage of the bacteria was observed by CLSM and SEM. Also, GR/CS NCs produced a toxic effect of 90 % on Artemia franciscana at 70□g/mL upon 24 h incubation. The recorded properties of the synthesized GR/CS NCs qualify them as potential agents against multi-drug resistant bacteria.

4.
Microb Pathog ; 141: 103992, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988009

RESUMO

ß-Glucan-binding protein (ßGBP) is important for the rational expansion of molecular biology. Here, zinc oxide nanoparticle (ZnONP) was synthesized using ßGBP from the crab Scylla serrata (Ss-ßGBP-ZnONP). Ss-ßGBP-ZnONP was observed as a 100 kDa band on sodium dodecyl sulfate polyacrylamide gel and characterized with UV-vis spectroscopy at 350 nm. X-ray diffraction analysis displayed values consistent with those for zincite. Fourier transform infrared spectroscopy revealed the presence of functional groups, including amide, alcohol, alkane, alkyl halide, and alkene groups. The zeta potential (-5.36 mV) of these particles indicated their stability, and transmission electron microscopy revealed the presence of 50 nm nanocones. Ss-ßGBP-ZnONPs were tested at 100 µg/mL against the gram-positive Enterococcus faecalis and gram-negative Pseudomanas aeruginosa using confocal laser scanning microscopy and the bacterial viability assay was also performed. The growth of MCF7 breast cancer cells was inhibited following treatment with 75 µg/mL Ss-ßGBP-ZnONPs. Thus, Ss-ßGBP-ZnONPs have the ability to control the growth of pathogenic bacteria and inhibit the viability of MCF7 breast cancer cell lines.

5.
Microb Pathog ; 139: 103893, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31778757

RESUMO

Soil contamination has enlarged over the decades due to intensive use of pesticides and chemical fertilizers in agronomy. Earthworms are significant organisms in the soil community. Earthworms are the major role in soil fertility in most ecological system and the production of biogenic structures. Moreover, earthworm gut mucus enhances the beneficial soil microorganism potential biological activities. They are used as model organisms for assessing the ecological risks of chemicals. Enrichment of essential nutrients in soil through earthworm is a cost-effective and eco-friendly approach. In India, the organophosphorus pesticide monocrotophos is commonly used to control agricultural pests. Hence, it is important to study the effect of monocrotophos on the gut microbiota in Lampito mauritii. A 15-day exposure to a low (1/10th of the LC50 after 96 h i.e., 0.093 ppm kg-1) and high sublethal concentration (1/3rd of the LC50 after 96 h i.e., 0.311 ppm kg-1) of monocrotophos led to reduced proliferation of the gut microbiota in L. mauritii. However, exposure for 30 days led to a recuperation of the microbial populations to near control values. Among the eight bacterial and five fungal species that inhabit the gut of L. mauritii, only six bacterial and three fungal species were able to survive after exposure to monocrotophos. In addition to the study, histopathological changes were observed in the intestine of L.mauritii after application of lower sublethal concentration of monocrotophos. Severe pathological changes such as vacuolization, degenerated nuclei, damaged villi and congestion of the blood sinuses were noticed in the intestine on 1st and, 5th day of the experiment. But in 30th day the damages were slowly recovered due to degradation of monocrotophos by the presence of some pesticides degrading bacterial and fungal species and regenerative capability of chloragogen cells in the intestine. The results suggested that reduced microbial populations and pathological damages in intestine were observed during the application of monocrotophos. So, the monocrotophos have several harmful impacts on earthworms.

6.
Microb Pathog ; 139: 103917, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830581

RESUMO

Ammonia is a widespread pollutant that is toxic to living organisms in aquaculture. This study aimed to evaluate the effects of a diet supplemented with beta-glucan from yeast, Saccharomyces cerevisiae (Sc-ßG), on the stress response of Oreochromis mossambicus (Tilapia) to ammonia. Fish were divided into four groups, including a control fed a basal diet and three experimental groups fed diets supplemented with Sc-ßG at 2, 5 and 10 mg/g respectively. After 8 weeks, experimental groups were exposed to ammonia at 100 mg L-1 for 1 week. Growth was measured after the 8-week feeding trial and serum, mucus, and liver tissue were sampled before and after the ammonia challenge. Compared with the control diet, feed supplemented with Sc-ßG at 10 mg/g significantly (p < 0.05) improved growth performance (7.8-9.9 g increase in weight). The cellular immune responses (myeloperoxidase, reactive oxygen species, and reactive nitrogen species), humoral immune responses (alkaline phosphatase, lysozyme, and peroxidase inhibition), and antioxidant response (catalase, superoxide dismutase, and glutathione) were tested in serum, mucus and liver tissue. Compared with the control, these responses were significantly (p < 0.05) enhanced at 10 mg/g supplementation with Sc-ßG. This study demonstrates that Sc-ßG may be applied to induce stress tolerance and improve growth performance in aquaculture.

7.
J Photochem Photobiol B ; 202: 111729, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31835161

RESUMO

Bacterial pathogenicity is becoming a major cause of morbidity and mortality around the globe. Researchers are tirelessly finding solutions to cure or prevent infections caused by bacterial pathogens. Nanotechnology is a fast-growing area of research, effectively influencing and preventing bacterial growth. Nanoparticles (NPs) of silver, copper and gold are being used to kill bacterial pathogens in the past years but the toxicity of NPs at higher concentrations remains a major problem. Therefore, in the present study, Co3O4@ZrO2 (CoZ) core/shell NPs were synthesized using a simple sol-gel method. The synthesized NPs were characterized using different analytical techniques revealing the absorption bands at 456 and 277 nm with crystalline size of ~600 nm core/shell. The functional groups and oxidation states were characterized using FTIR analysis. Further bactericidal properties of core/shell of Co3O4@ZrO2 NPs were tested against Gram negative (Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus, Bacillus subitilis) pathogens. The core/shell CoZ NPs showed maximum growth inhibitions against S. aureus and P. aeruginosa. At the highest concentration of 200 µg/mL, the maximum zone of inhibition was observed. The synthesized CoZ NPs was also subjected to photocatalytic degradation of rhodamine B in 180 min under visible light irradiation. The present study could be an innovative and efficient research for both biomedical and wastewater treatment applications.


Assuntos
Nanopartículas Metálicas/química , Rodaminas/química , Catálise , Cobalto/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Luz , Nanopartículas Metálicas/toxicidade , Óxidos/química , Tamanho da Partícula , Fotólise/efeitos da radiação , Zircônio/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-31870631

RESUMO

BACKGROUND: Antibiotic-resistant bacteria are one of the major global health issues that can affect humans, animals, and the environment. Antibiotic-resistant bacteria have emerged as opportunistic pathogenic bacteria that are frequently isolated from both clinical patients and healthy individuals. The aim of this study was to characterize the antibiotic-resistant bacteria isolated from powdered infant formulas marketed in Riyadh, Saudi Arabia. METHODS: Infant powdered milk formulas were purchased from different pharmacies located within Riyadh, and ten products of powdered milk formulas designed for children of various ages were then transferred to the laboratory in the Department of Botany and Microbiology at King Saud University, Riyadh. Isolation and purification of Bacillus species were both performed according to standard protocols. The identification test was performed using the automated Vitek 2 system (BioMerieux, France), and antibiotic sensitivity tests were performed using the disk-diffusion method incorporating standard antibiotic disks foramikacin (30µg/disk), gentamicin (10µg/disk), imipenem (10µg/disk), moxifloxacin (5µg/disk), cefoperazone (75µg/disk), cefpodoxime (10µg/disk), ceftazidime (30µg/disk), and cefepime (30µg/disk). Statistical analysis was performed using Ward's method to obtain antibiotic resistance of the isolates. RESULTS: The results obtained from the milk samples indicated that all isolates were sensitive to amikacin, gentamicin, and moxifloxacin. A group of isolates obtained from milk was resistant to cefoperazone by 6.49%, cefpodoxime by 25.9%, ceftazidime by 14.28%, and cefepime by 19.48%. CONCLUSIONS: Based on these findings, we concluded that the powdered infant formula marketed in Riyadh City may act as a source of bacterial isolates that are resistant to several standard antibiotics.

9.
Saudi J Biol Sci ; 26(7): 1557-1562, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762626

RESUMO

Antibiotic-resistant Escherichia coli strains including extended-spectrum ß-lactamase (ESBL) isolates are globally widespread in medical, food, and environmental sources. Some of these strains are considered the most pathogenic bacteria in humans. The present work examined the predominance of antibiotic resistance in E. coli strains in wound infections comparing with E. coli strains isolated from a raw milk as a potential source of those strains. The wound infections included abdomen, anus, arm, back, buttock, chest, foot, hand, head, leg, lung, mouth, neck, penis, thigh, toe, and vagina infections. In total, 161 and 153 isolates identified as E. coli were obtained from wound infections and raw milk, respectively. A Vitek 2 system innovated by bioMérieux, France was applied to perform the identification and susceptibility tests. The E. coli isolates that have ability to produce ESBL were detected by an ESBL panel and NO45 card (bioMérieux). Over half of the E. coli were from abdomen, back, and buttock wound infections. More than 50%of the E. coli isolates obtained from wound infections were resistant to cefazolin, ampicillin, cefuroxime, ciprofloxacin, mezlocillin, moxifloxacin, piperacillin, and tetracycline; 70% of the isolates from wound infections and 0% of the isolates from raw milk were E. coli isolates produced ESBL. The data showed that the strains resistance to multi-antibiotic and produced ESBL are more widespread among wound infections than in raw milk.

10.
J Photochem Photobiol B ; 199: 111620, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31522113

RESUMO

Current scenario of bio-nanotechnology, successfully fabrication of ultrafine titanium dioxide nanoparticles (TiO2NPs) using various biological protein sources for the multipurpose targets. The present research report involves synthesis of TiO2NPs using antimicrobial peptide (AMP) crustin (Cr). Crustin previously purified from the blue crab, Portunus pelagicus haemolymph, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Synthesized Cr-TiO2NPs was physico-chemically characterized by UV-Visible spectroscopy (UV-Visible), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and zeta potential examination. X-ray diffraction analysis for crystalline nature and phase identification of titanium dioxide nanoparticles was absorbed. Functional groups were found through FTIR ranges between 1620 and 1700 cm-1. HR-TEM analysis showed that the synthesized Cr-TiO2NPs tetragonal shape and sizes ranging from 10 to 50 nm. Finally, the surface charge of the Cr-TiO2NPs was confirmed through zeta potential analysis. Furthermore, the characterized Cr-TiO2NPs exhibited good biofilm inhibition against GPB - S. mutans (Gram Positive Bacteria- Streptococcus mutans), GNB - P. vulgaris (Gram Negative Bacteria- Proteus vulgaris) and fungal Candida albicans. Moreover, photocatalysis demonstrated that the Cr-TiO2NPs was effectively explored the degradation of dyes. The results suggest that Cr-TiO2NPs is an excellent bactericidal, fungicidal and photocatalytic agent that can be supportively used for biomedical and industrial applications.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Inseticidas/química , Nanocápsulas/química , Processos Fotoquímicos , Titânio/química , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes , Braquiúros/química , Candida albicans/efeitos dos fármacos , Catálise , Sobrevivência Celular/efeitos dos fármacos , Culicidae , Liberação Controlada de Fármacos , Humanos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Luz , Estrutura Molecular , Proteus vulgaris/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos
11.
Saudi J Biol Sci ; 26(6): 1285-1290, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516359

RESUMO

Antibiotic-resistant Staphylococci are a global issue affecting humans, animals, and numerous natural environments. Antibiotic-resistant Staphylococcus epidermidis is an opportunistic pathogen frequently isolated from patients and healthy individuals. This study aimed to examine the antibiotic resistance of S. epidermidis isolated from patients, healthy students and compare the results with antibiotic-resistant bacteria isolated from pasteurized milk. Clinical strain isolation was performed in several hospitals in the Riyadh. Skin swabs from 100 healthy undergraduate candidate students were obtained at King Saud University. The pasteurized milk samples were obtained from local market (company, X). After isolation, identification and susceptibility tests were performed using an automated system. A multiplex tuf gene-based PCR assay was used to confirm identification. Biofilm production and biofilm-related gene expression were studied. S. epidermidis represented 17% of clinical bacterial isolates, and 1.7% of isolates obtained from healthy students were multiantibiotic-resistant. All patient strains were teicoplanin- and vancomycin-susceptible, while all student strains were gentamicin-, levofloxacin-, moxifloxacin-, and trimethoprim/sulfamethoxazole-susceptible. All the bacteria isolated from pasteurized milk were benzylpenicillin and oxacillin-resistant strains. Of the S. epidermidis strains, 91% could produce biofilms, and mecA, icaADBR, ica-ADB, ica-AD, ica-A only, and ica-C only were expressed in 83, 17.1, 25.7, 37.1, 20, and 0% of the strains, respectively. This work demonstrates that S. epidermidis can be accurately identified using a multiplex tuf-based assay, and that multiantibiotic-resistant S. epidermidis strains are widespread amongst patients and healthy students.

12.
Bioorg Chem ; 91: 103157, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421509

RESUMO

The compound diethyl 2,2'-(thiocarbonyl-bis(sulfanediyl))-diacetate 4 belongs to the trithiocarbonate class containing a trithiocarbonate function group flanked by ethyl acetate. In this procedure, a novel economic synthesis route to obtain compound 4 is described. This compound proved to possess broad-spectrum antimicrobial activity both in vitro and in vivo, and could be used as a lead compound. It is worth mentioning that this compound has been patented [No. US 9,988,348 B1; date of patent: June 5, 2018].

13.
Int J Biol Macromol ; 139: 688-696, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376450

RESUMO

ZnO nanoparticles (NPs) synthesized using haemocyanin (Hc-ZnONPs) purified from haemolymph of Penaeus semisulcatus were characterized using various techniques. HR-TEM and SEM microscopy indicated Hc-ZnONPs had a typical size of 20-50 nm and were spherical. The objective of current investigation was to assess the effects of dietary supplementation of Hc-ZnONPs on the development and activity of digestive and metabolic enzymes, as well as the antioxidant levels in P. semisulcatus. Trial basal diets were supplemented with Hc-ZnONPs at rates of 0, 10, 20, 40, 60, and 80 mg kg-1 (dry feed weight) and were fed to P. semisulcatus for 30 d. For 60 mg kg-1 Hc-ZnONPs-supplemented feed, significantly (P < 0.05) enhanced endurance, development, and activity of the digestive enzyme were observed. The enzymatic antioxidants and metabolic enzymes activities in the muscle exhibited no significant changes when 10-60 mg kg-1 Hc-ZnONPs-supplemented feed was fed to P. semisulcatus. Conversely, feeding the P. semisulcatus with 80 mg kg-1 Hc-ZnONPs produced a harmful outcome, with significant increase in the enzymatic antioxidants and metabolic enzymes. Consequently, 80 mg kg-1 Hc-ZnONPs was identified as lethal to P. semisulcatus. Hence, it is proposed that the diet of P. semisulcatus can be supplemented with up to 60 mg kg-1 Hc-ZnONPs for improving the endurance, development and immunity.

14.
Photodiagnosis Photodyn Ther ; 28: 1-7, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31374264

RESUMO

The albumen plays a major role in the protection of eggs against microorganisms. It contains an arsenal of natural antimicrobial molecules and antibacterial proteins, including the well-known ovotransferrin and lysozyme, which exert their activities against a range of bacteria. In the present study, the hen's albumen extract treated with the dried insect body of blister beetle M. pustulata was assessed for antibacterial, antibiofilm, anti-inflammatory and anti-proliferative activity. The zone of inhibition against Gram positive E. faecalis and S. aureus was 10.8 mm and 12.1 mm respectively at 100 µg mL-1. However, it was 13.6 mm and 15.3 mm for Gram negative P. aeruginosa and P. vulgaris respectively. The biofilm of tested bacteria was significantly inhibited at 100 µg mL-1. The hydrophobicity of bacterial biofilms was considerably condensed after treatment with the hen's albumen extracts at 100 µg mL-1. The anti-inflammatory activity of hen's albumen extracts was confirmed by the inhibition of cyclooxygenase (COX) enzyme to 84.91% at 100 µg mL-1 with the relative IC50 of 8.26 µg mL-1. The albumen extract effectively inhibited the viability (23.61%) of HepG2 hepatic cancer cells at 100 µg mL-1. The anti-proliferative activity of the albumen extracts was further revealed by the induction of HepG2 apoptotic cell morphology. This study concludes that the hen's albumen extract treated with M. pustulata is a natural therapeutic agent to treat biofilm associated clinical bacteria, inflammations and human hepatic cancer cells.

15.
J Trace Elem Med Biol ; 55: 170-179, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31345355

RESUMO

BACKGROUND: Trace elements of copper (Cu) are one of the main forms of ecological noxious waste in freshwater systems that affect the survival and development of organisms. The objective of the current study was to investigate the effects of chronic exposure to Cu on the growth, oxidative stress, immune and biochemical response in the Nile tilapia, Oreochromis niloticus. METHODS: Three groups of O. niloticus were tested as follows; the first group was used as the control (not treated with Cu in water), while the 2nd and 3rd groups were exposed to (low) 40 µg L-1 and (high) 400 µg L-1 concentrations of Cu added to water, respectively. The duration of the experiment, which was conducted in triplicate, was 60 d. End points were evaluated on days 30 and 60. Following 30 d and 60 d of exposure to Cu, the fish were removed from experimental tanks to determine growth. Consequently, blood samples were collected from caudal veins at the end of the trial period (30 d and 60 d) and serum was separated to evaluate different immunological parameters, such as lysozymes (LYZ), respiratory burst activity (RBA) and myeloperoxidase (MPO). Gill and liver tissues were collected for evaluation of Cu and certain biochemical parameters as follows: antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST); non-enzymatic antioxidants such as glutathione (GSH) and metallothionein (MT), and oxidative stress indicators such as malondialdehyde (MDA) and protein carbonyl (PCO). The results pertaining to treatments and the control were compared using two-way ANOVA and Tukey's HSD test. The level of significance was set at P ≤ 0.05. Data were expressed as mean ±â€¯SD. RESULTS: Chronic exposure to Cu did not induce any mortality in fish during the test period. However, following exposure to Cu, growth of fish in the exposed groups was affected more than that in the control group (unexposed to Cu). In addition, accumulation of Cu in the liver tissue was higher than that in the gill tissues of fish exposed to Cu, compared to that in the control. Gill and liver tissues of Cu-exposed fish showed a significant (P ≤ 0.05) reduction in the activities of the antioxidant enzymes, SOD, CAT, GPx, and GST, compared to those of unexposed fish. Non-enzymatic antioxidants, GSH and MT, in gill and liver tissues were significantly increased (P ≤ 0.05) in fish exposed to both concentrations of Cu, compared to those in unexposed fish. Oxidative stress indicators, MDA and PCO in gills and liver of Cu-exposed fish was significantly (P ≤ 0.05) at both tested concentrations, when compared to control group. Non-specific immune response of LYZ, RBA, and MPO activity in serum decreased significantly (P ≤ 0.05) in Cu-exposed fish, compared with that of unexposed fish. CONCLUSION: Overall, the present results highlighted that chronic exposure to Cu ions may exert a strong effect on the antioxidant and immune responses of O. niloticus. Changes in antioxidant enzymes, oxidative stress effects and immune parameters during post-chronic metal exposure may indicate the potential of these parameters as biomarkers of metal toxicity in aquatic ecosystems.


Assuntos
Antioxidantes/toxicidade , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/imunologia , Cobre/administração & dosagem , Cobre/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Antioxidantes/administração & dosagem , Ciclídeos/metabolismo , Cobre/imunologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Estresse Oxidativo/imunologia
16.
J Photochem Photobiol B ; 197: 111541, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31272033

RESUMO

Here, we report the novel fabrication of ZnO nanoparticles using the Costus igneus leaf extract. Gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy to determine the bioactive components present in the plant extract. The synthesis of Ci-ZnO NPs (C. igneus- coated zinc oxide nanoparticles) was accomplished using a cost-effective and simple technique. Ci-ZnO NPs were specified using UV-visible spectroscopy, FTIR, XRD, and TEM. Ci-ZnO NPs was authenticated by UV-Vis and exhibited a peak at 365 nm. The XRD spectra proved the crystalline character of the Ci-ZnO NPs synthesized as hexagonal wurtzite. The FTIR spectrum illustrated the presence of possible functional groups present in Ci-ZnO NPs. The TEM micrograph showed evidence of the presence of a hexagonal organization with a size of 26.55 nm typical of Ci-ZnO NPs. The α-amylase and α-glucosidase inhibition assays demonstrated antidiabetic activity of Ci-ZnO NPs (74 % and 82 %, respectively), and the DPPH [2,2-diphenyl-1-picrylhydrazyl hydrate] assay demonstrated the antioxidant activity of the nanoparticles (75%) at a concentration of 100 µg/ml. The Ci-ZnO NPs exhibited promising antibacterial and biofilm inhibition activity against the pathogenic bacteria Streptococcus mutans, Lysinibacillus fusiformis, Proteus vulgaris, and Vibrio parahaemolyticus. Additionally, the Ci-ZnO NPs showed biocompatibility with mammalian RBCs with minimum hemolytic activity (0.633 % ±â€¯0.005 %) at a concentration of 200 µg/ml.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Costus/química , Costus/metabolismo , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Química Verde , Hemólise/efeitos dos fármacos , Humanos , Insulina/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
17.
J Trace Elem Med Biol ; 54: 8-20, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31109625

RESUMO

Recently, biogenic nanoparticles have been considered promising candidates for manufacturing antibacterial nanodrugs. Here, we synthesized AgNPs using the crab-borne antibacterial agent hemocyanin and assessed the antibacterial action against several pathogenic bacteria. In this study, the crustacean immune protein hemocyanin (Pp-Hc, 78 kDa) purified from Portunus pelagicus hemolymph was used to fabricate silver nanoparticles. Characterization of hemocyanin-fabricated AgNPs (Pp-Hc AgNPs) were achieved using ultraviolet-visible spectrophotometer, X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), high-resolution-transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy. The antibacterial efficacy of AgNO3,Pp-Hc and Pp-Hc AgNPs was compared by growth inhibition, antibiofilm and live and dead analyses. Based on the results, Pp-Hc AgNPs was more efficient than Pp-Hc and AgNO3 against pathogenic bacteria. Mechanistic analysis revealed membrane damage and reactive oxygen species (ROS) generation, suggesting that Pp-Hc and Pp-Hc AgNPs rely to similar modes of action. Intracellular protein molecules and nucleic acid leakage confirmed that Pp-Hc AgNPs increase membrane permeability, leading to cell death. Based on our results, capping of the exterior surface of nanoparticles with antimicrobial crab-borne peptides, such as Pp-Hc, improves their functions as potential agents against bacterial diseases, which may be useful in clinical applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Braquiúros/química , Hemocianinas/química , Hemocianinas/farmacologia , Nanopartículas Metálicas/química , Prata/química , Animais , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Malondialdeído/metabolismo , Testes de Sensibilidade Microbiana , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase/metabolismo
18.
World J Microbiol Biotechnol ; 35(3): 52, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30868269

RESUMO

Several Bacillus strains are used as biocontrol agents, as they frequently have strong antagonistic effects against microbial plant pathogens. Bacillus strain SZMC 6179J, isolated from tomato rhizosphere, was previously shown to have excellent in vitro antagonistic properties against the most important fungal pathogens of tomato (Alternaria solani, Botrytis cinerea, Phytophthora infestans and Sclerotinia sclerotiorum) as well as several Fusarium species. Taxonomic investigations revealed that it is a member of the B. subtilis subsp. subtilis group and very closely related with the reference type strain B. subtilis subsp. subtilis 168. The sequenced genome of strain SZMC 6179J contains the genes responsible for the synthesis of the extracellular antibiotics surfactin, fengycin and bacilysin. Compared to strain 168, a prophage-like region is missing from the genome of SZMC 6179J, while there are 106 single nucleotide polymorphisms and 23 deletion-insertion polymorphisms. The high biocontrol potential of strain SZMC 6179J may results from a single base deletion in the sfp gene encoding the transcription factor of the surfactin and fengycin operons. Hypermutated regions reflecting short-time evolutionary processes could be detected in SZMC 6179J. The deletion-insertion polymorphism in the sfp gene and the detected hypermutations can be suggested as genetic determinants of biocontrol features in B. subtilis.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Agentes de Controle Biológico/metabolismo , Mutação , Sequência de Aminoácidos , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Bacillus subtilis/classificação , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Genes Bacterianos/genética , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Lycopersicon esculentum/microbiologia , Família Multigênica , Tipagem de Sequências Multilocus , Peptídeos Cíclicos/genética , Filogenia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Metabolismo Secundário/genética , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
19.
J Photochem Photobiol B ; 192: 55-67, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685584

RESUMO

Arboviral diseases and microbial pathogens resistant to commercially available drugs are on the rise. Herein, a facile microbial-based approach was developed to synthesize selenium nanowires (Se NWs) using microbial exopolymer (MEP) extracted from the Bacillus licheniformis (probiotic bacteria). MEP-Se NWs were characterized using UV-Visible, XRD, FTIR, HR-TEM, FE-SEM and EDX. An UV-Visible peak was detected at 330 nm while XRD spectrum data pointed out the crystalline nature of MEP-Se NWs. FTIR spectrum revealed functional groups with strong absorption peaks in the range 3898.52-477.97 cm-1. FE-SEM and HR-TEM revealed that the obtained structures were nanowires of 10-30 nm diameter. Se presence was confirmed by EDX analysis. MEP-Se NWs at 100 µg/ml highly suppressed the growth of both Gram (-) and Gram (+) bacteria. Further, microscopic analysis evidenced that 75 µg/ml MEP-Se NWs suppressed biofilm formation. Hemolytic assays showed that MEP-Se NWs were moderately cytotoxic. In addition, LC50 values lower than 10 µg/ml were estimated testing MEP-Se NWs on both Aedes aegypti and Culex quinquefasciatus 3rd instar larvae. Morphological and histological techniques were used to elucidate on the damages triggered in mosquito tissues, with special reference to midgut, post-exposure to MEP-Se NWs. Therefore, based on our findings, MEP-Se NWs can be considered for entomological and biomedical applications, with special reference to the management of biofilm forming microbial pathogens and arbovirus mosquito vectors.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Nanofios/química , Selênio , Animais , Antibacterianos/farmacologia , Arbovirus , Bacillus licheniformis/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Vetores Genéticos , Larva/efeitos dos fármacos , Mosquitos Vetores
20.
J Trace Elem Med Biol ; 51: 191-203, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30466931

RESUMO

Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 µg/ml = 4.0 mm, 75 µg/ml = 7.2 mm) and E. faecalis (50 µg/ml = 3.1 mm, 75 µg/ml = 5.1 mm), over P. aeruginosa (50 µg/ml = 2.1 mm, 75 µg/ml = 4.8 mm), E. coli (50 µg/ml = 1.3 mm, 75 µg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 µg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 µg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Encefalite Japonesa/tratamento farmacológico , Mosquitos Vetores/efeitos dos fármacos , Nanofios/química , Selênio/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Braquiúros , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Selênio/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA