Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
J Med Chem ; 64(19): 13937, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606261
2.
Environ Int ; 158: 106924, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34634621

RESUMO

Global concerns towards potentially toxic elements (PTEs) are steadily increasing due to the significant threats that PTEs pose to human health and environmental quality. This calls for immediate, effective and efficient remediation solutions. Earthworms, the 'ecosystem engineers', can modify and improve soil health and enhance plant productivity. Recently, considerable attention has been paid to the potential of earthworms, alone or combined with other soil organisms and/or soil amendments, to remediate PTEs contaminated soils. However, the use of earthworms in the remediation of PTEs contaminated soil (i.e., vermiremediation) has not been thoroughly reviewed to date. Therefore, this review discusses and provides comprehensive insights into the suitability of earthworms as potential candidates for bioremediation of PTEs contaminated soils and mitigating environmental and human health risks. Specifically, we reviewed and discussed: i) the occurrence and abundance of earthworms in PTEs contaminated soils; ii) the influence of PTEs on earthworm communities in contaminated soils; iii) factors affecting earthworm PTEs accumulation and elimination, and iv) the dynamics and fate of PTEs in earthworm amended soils. The technical feasibility, knowledge gaps, and practical challenges have been worked out and critically discussed. Therefore, this review could provide a reference and guidance for bio-restoration of PTEs contaminated soils and shall also help developing innovative and applicable solutions for controlling PTEs bioavailability for the remediation of contaminated soils and the mitigation of the environment and human risks.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34477515

RESUMO

INTRODUCTION: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface. METHODS: The two important aspects, Brownian motion and Thermophoresis are considered. Thermal radiation is also included in present model. Based on the heat and mass flux, the Cattaneo-Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model. RESULTS: The results are plotted graphically to see the variations in three main profiles i.e. momentum, temperature and concentration profile. CONCLUSION: The outcomes indicate that skin friction enhances due to implementation of Darcy medium. It is also noted that the relaxation time parameter results in enhancement of the temperature distribution. Thermal radiation enhances the temperature distribution and so is the case with skin friction.

4.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502859

RESUMO

The Internet of Underwater Things (IoUTs) enables various underwater objects be connected to accommodate a wide range of applications, such as oil and mineral exportations, disaster detection, and tracing tracking systems. As about 71% of our earth is covered by water and one-fourth of the population lives around this, the IoUT expects to play a vital role. It is imperative to pursue reliable communication in this vast domain, as human beings' future depends on water activities and resources. Therefore, there is a urgent need for underwater communication to be reliable, end-to-end secure, and collision/void node-free, especially when the routing path is established between sender and sonobuoys. The foremost issue discussed in this area is its routing path, which has high security and bandwidth without simultaneous multiple reflections. Short communication range is also a problem (because of an absence of inter-node adjustment); the acoustic signals have short ranges and maximum-scaling factors that cause a delay in communication. Therefore, we proposed Rotational Orbit-Based Inter Node Adjustment (ROBINA) with variant Path-Adjustment (PA-ROBINA) and Path Loss (PL-ROBINA) for IoUTs to achive reliable communication between the sender and sonobuoys. Additionally, the mathematical-based path loss model was discussed to cover the PL-ROBINA strategy. Extensive simulations were conducted with various realistic parameters and the results were compared with state-of-the-art routing protocols. Extensive simulations proved that the proposed routing scheme outperformed different realistic parameters; for example, packet transmission 45% increased with an average end-to-end delay of only 0.3% respectively. Furthermore, the transmission loss and path loss (measured in dB) were 25 and 46 dB, respectively, compared with other algorithms, for example, EBER2 54%, WDFAD-BDR 54%, AEDG 49%, ASEGD 55%, AVH-AHH-VBF 54.5%, and TANVEER 39%, respectively. In addition, the individual parameters with ROBINA and TANVEER were also compared, in which ROBINA achieved a 98% packet transmission ratio compared with TANVEER, which was only 82%.


Assuntos
Internet das Coisas , Tecnologia sem Fio , Acústica , Redes de Comunicação de Computadores , Humanos , Órbita
5.
FEBS Open Bio ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551213

RESUMO

Overexpression of ferritin heavy chain (FTH1) often associates with good prognosis in breast cancer (BCa), particularly in the triple-negative subtype (triple-negative breast cancer). However, the mechanism by which FTH1 exerts its possible tumor suppressor effects in BCa is not known. Here, we examined the bearing of FTH1 silencing or overexpression on several aspects of BCa cell growth in vitro. FTH1 silencing promoted cell growth and mammosphere formation, increased c-MYC expression, and reduced cell sensitivity to chemotherapy. In contrast, FTH1 overexpression inhibited cell growth, decreased c-MYC expression, and sensitized cancer cells to chemotherapy; silencing of c-MYC recapitulated the effects of FTH1 overexpression. These findings show for the first time that FTH1 suppresses tumor growth by inhibiting the expression of key oncogenes, such as c-MYC.

6.
J Hazard Mater ; 416: 125914, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492848

RESUMO

A simultaneous denitrifying and mineralizing bacterium, Pseudomonas sp. WZ39 was isolated for fluoride (F-), nitrate (NO3--N), and calcium (Ca2+) removal. Strain WZ39 exhibited a remarkable defluoridation efficiency of 87.49% under a pH of 6.90, F- and Ca2+ concentration of 1.99 and 201.88 mg L-1, respectively. EEM, SEM-EDS, XRD, and FTIR analyses elucidated the chemical adsorption and co-precipitation with calcium salt contributed to the removal of F-. The mechanisms of biomineralization were also investigated by determining the role of bound and unbound extracellular polymeric substances (EPS), cell wall, and calcium channel in nucleation. The results showed that bacteria can promote nucleation on the templates of cell walls or EPS through the electrostatic effect. The presence of the calcium channel blocker inhibited the transport of intracellular Ca2+ to the extracellular environment. The outcome of the present research can provide a theoretical basis for the understanding of MICP phenomenon and the efficient treatment of F- containing groundwater.


Assuntos
Fluoretos , Nitratos , Cálcio , Desnitrificação , Pseudomonas
7.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577029

RESUMO

Among the trace elements, selenium (Se) has great demand as a health supplement. Compared to its other forms, selenium nanoparticles have minor toxicity, superior reactivity, and excellent bioavailability. The present study was conducted to produce selenium nanoparticles (SeNPs) via a biosynthetic approach using probiotic Bacillus subtilis BSN313 in an economical and easy manner. The BSN313 exhibited a gradual increase in Se reduction and production of SeNPs up to 5-200 µg/mL of its environmental Se. However, the capability was decreased beyond that concentration. The capacity for extracellular SeNP production was evidenced by the emergence of red color, then confirmed by a microscopic approach. Produced SeNPs were purified, freeze-dried, and subsequently characterized systematically using UV-Vis spectroscopy, FTIR, Zetasizer, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. With an average particle size of 530 nm, SeNPs were shown to have a -26.9 (mV) zeta potential and -2.11 µm cm/Vs electrophoretic mobility in water. SeNPs produced during both the 24 and 48 h incubation periods showed good antioxidant activity in terms of DPPH and ABST scavenging action at a concentration of 150 µg/mL with no significant differences (p > 0.05). Moreover, 200 µg/mL of SeNPs showed antibacterial reactivity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 9027, and Pseudomonas aeruginosa ATCC 25923. In the future, this work will be helpful to produce biogenic SeNPs using probiotic Bacillus subtilis BSN313 as biofactories, with the potential for safe use in biomedical and nutritional applications.

8.
Environ Pollut ; : 118237, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34592330

RESUMO

Soil microbes influence the uptake of toxic metals (TMs) by changing soil characteristics, bioavailability and translocation of TMs, and soil health indicators in polluted environment. The potential effect of Streptomyces pactum (Act12) and Bacillus consortium (B. subtilis and B. licheniformis; 1:1) on soil enzymes and bacterial abundance, bioavailability and translocation of Zn and Cd by Symphytum officinale, and physiological indicators in soil acquired from Fengxian (FX) mining site. Act12 and Bacillus consortium were applied at 0 (CK), 0.50 (T1), 1.50 (T2), and 2.50 (T3) g kg-1 in a split plot design and three times harvested (H). Results showed that soil pH significantly dropped, whereas, electrical conductivity increased at higher Act12 and Bacillus doses. The extractable Zn lowered and Cd increased at each harvest compared to their controls. Soil ß-glucosidase, alkaline phosphatase, urease and sucrase improved, whereas, dehydrogenase reduced in harvest 2 and 3 (H2 and H3) as compared to harvest 1 (H1) after Act12 and Bacillus treatments. The main soil phyla individually contributed ∼5-55.6%. Soil bacterial communities' distribution was also altered by Act12 and Bacillus amendments. Proteobacteria, Acidobacteria, and Bacteroidetes increased, whereas, the Actinobacteria, Chloroflexi, and Gemmatimonadetes decreased during the one-year trial. The Zn and Cd concentration significantly decreased in shoots at each harvest, whereas, the roots concentration was far higher than the shoots, implicating the rhizoremediation by S. officinale. Accumulation factor (AF) and bioconcentration ratio (BCR) of Zn and Cd in shoots were lower and remained higher in case of roots than the standard level (≥1). BCR values of roots indicated that S. officinale can be used for rhizoremediation of TMs in smelter/mines-polluted soils. Thus, field trials in smelter/mines contaminated soils and the potential role of saponin and tannin exudation in metal translocation by plant will broaden our understanding about the mechanism of rhizoremediation of TMs by S. officinale.

9.
Sci Total Environ ; 806(Pt 1): 150341, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563912

RESUMO

A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.

10.
Biochem Biophys Res Commun ; 574: 27-32, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425283

RESUMO

HIV-1 accessory protein Vif is required for neutralization of cellular restriction factor APOBEC3G through its ubiquitination and proteasomal degradation which allows replication of HIV-1 in non-permissive cells. This function of Vif is required for maintaining the genomic integrity of HIV-1. We here report that the Vif interacts with the cellular E3 ubiquitin ligase CHIP and the level of Vif protein gets reduced by the expression of CHIP. Reduction of Vif by CHIP expression is due to its increased rate of degradation as shown by cycloheximide (CHX) chase assay. CHIP expression also resulted in the ubiquitination of Vif protein in a dose dependent manner. The role of CHIP in the ubiquitination and degradation was confirmed by the endogenous knockdown of CHIP using CRISPR Cas9 method. Loss of endogenous CHIP protein showed the stabilization of Vif with concomitant destabilization of APOBEC3G. As expected Vif mediated ubiquitination of APOBEC3G was also reduced in CHIP knockdown cells. These results established that CHIP functions as a negative regulator of Vif protein which in-turn stabilizes APOBEC3G.

11.
Int J Pept Res Ther ; : 1-19, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34393689

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a critical healthcare challenge due to its ability to cause persistent infections and the acquisition of antibiotic resistance mechanisms. Lack of preventive vaccines and rampant drug resistance phenomenon has rendered patients vulnerable. As new antimicrobials are in the preclinical stages of development, mining for the unexploited drug targets is also crucial. In the present study, we designed a B- and T-cell multi-epitope vaccine against P. aeruginosa using a subtractive proteomics and immunoinformatics approach. A total of five proteins were shortlisted based on essentiality, extracellular localization, virulence, antigenicity, pathway association, hydrophilicity, and low molecular weight. These include two outer membrane porins; OprF (P13794) and OprD (P32722), a protein activator precursor pra (G3XDA9), a probable outer membrane protein precursor PA1288 (Q9I456), and a conserved hypothetical protein PA4874 (Q9HUT9). These shortlisted proteins were further analyzed to identify immunogenic and antigenic B- and T-cell epitopes. The best scoring epitopes were then further subjected to the construction of a polypeptide multi-epitope vaccine and joined with cholera toxin B subunit adjuvant. The final chimeric construct was docked with TLR4 and confirmed by normal mode simulation studies. The designed B- and T-cell multi-epitope vaccine candidate is predicted immunogenic in nature and has shown strong interactions with TLR-4. Immune simulation predicted high-level production of B- and T-cell population and maximal expression was ensured in E. coli strain K12. The identified drug targets qualifying the screening criteria were: UDP-2-acetamido-2-deoxy-d-glucuronic acid 3-dehydrogenase WbpB (G3XD23), aspartate semialdehyde dehydrogenase (Q51344), 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (Q9HV71), 3-deoxy-D-manno-octulosonic-acid transferase (Q9HUH7), glycyl-tRNA synthetase alpha chain (Q9I7B7), riboflavin kinase/FAD synthase (Q9HVM3), aconitate hydratase 2 (Q9I2V5), probable glycosyltransferase WbpH (G3XD85) and UDP-3-O-[3-hydroxylauroyl] glucosamine N-acyltransferase (Q9HXY6). For druggability and pocketome analysis crystal and homology structures of these proteins were retrieved and developed. A sequence-based search was performed in different databases (ChEMBL, Drug Bank, PubChem and Pseudomonas database) for the availability of reported ligands and tested drugs for the screened targets. These predicted targets may provide a basis for the development of reliable antibacterial preventive and therapeutic options against P. aeruginosa. Supplementary Information: The online version contains supplementary material available at 10.1007/s10989-021-10255-3.

12.
Bioresour Technol ; 340: 125690, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34352640

RESUMO

A Mn(II) oxidizing-denitrifying and tetracycline (TC) removal bacterium Zoogloea sp. MFQ7 was isolated in this study. Nitrogen removal was 83.49% by nitrogen balance experiment. The maximum removal efficiencies of nitrate, Mn(II), and TC by strain MFQ7 within 96 h was 100.00, 74.56, and 63.59% at C/N of 2.0, pH of 7.0, Mn(II) of 20 mg L-1, temperature of 30.0 °C, and TC of 0.2 mg L-1. SEM illustrated that biogenic manganese oxides (BMO) was petal-like, XRD and XPS analyses confirmed that MnO2 was the main component of BMO. Besides, the maximum adsorption capacity of BMO for TC was 52.21 mg g-1. FTIR detected the changes in TC adsorption by BMO. Pseudo-second-order model (R2 = 0.994) explained the adsorption kinetics of TC on BMO and Langmuir isotherm model (R2 = 0.983) suggested that it was homogeneous adsorption, thermodynamics data (ΔG < 0, ΔH = 18.31 kJ mol-1, ΔS = 72.8 J (mol*K)-1) confirmed that adsorption was endothermic and spontaneous.


Assuntos
Poluentes Químicos da Água , Zoogloea , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Manganês , Compostos de Manganês , Nitratos , Óxidos , Tetraciclina , Termodinâmica , Poluentes Químicos da Água/análise
13.
J Pak Med Assoc ; 71(8): 1959-1962, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34418009

RESUMO

OBJECTIVE: To assess the effect of nursing educational session on nurses' knowledge level related to breast cancer. METHODS: The quasi-experimental study was conducted at the Dow University of Health Sciences, and the Dr. Ruth Pfau Civil Hospital, Karachi, from January to July 2018, and comprised nurses from two tertiary care hospitals. A single educational session lasting 90-120-minute was conducted for all the subjects. Knowledge level was tested at baseline and post-intervention using the Comprehensive Breast Cancer Knowledge Test questionnaire. Data was analysed using SPSS 20. RESULTS: There were 131 nurses with a mean age of 31.05±6.23 years (range: 18-47 years). Overall, 53(40.5%) subjects had General Nursing Diploma; 92(70.2%) were married; 108(82.4%) had no history of breast cancer, 47(35.9%) had 1-4 years of working experience; and 106(80.9%) had completed their graduation from public-sector institutions. The improvement post-intervention was significant in all the three components of knowledge (p<0.05). CONCLUSIONS: Nursing educational session was found to have increased nurses' knowledge related to breast cancer.


Assuntos
Neoplasias da Mama , Adolescente , Adulto , Neoplasias da Mama/prevenção & controle , Competência Clínica , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Hospitais , Humanos , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
14.
J Hazard Mater ; 423(Pt A): 126976, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34461530

RESUMO

This study focused on a novel denitrifying Cupriavidus sp. W12, which can perform microbial induced calcium precipitation (MICP) to remove fluoride (F-) under aerobic and anaerobic conditions. Under anaerobic condition, the removal ratios of F-, calcium (Ca2+), and nitrate (NO3--N) reached 87.52%, 65.03%, and 96.06%, respectively, which were higher than that under aerobic condition (50.17%, 88.21%, and 67.33%, respectively). Higher pH of 8.26 was obtained after 120 h of the strain W12 growth under anaerobic condition than that under aerobic condition (7.77). The F- removal ratio of 98.20% was predicted by the response surface methodology (RSM). Scanning electron microscopy (SEM) images of anaerobic precipitation were dense and porous. CaCO3, Ca5(PO4)3OH, Ca5(PO4)3F, and CaF2 were determined by X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Self-aggregation of bacteria and adsorption of biological crystal seeds were the determinant of the precipitates formation. The results of infrared spectrometer (FTIR) and excitation-emission matrix (EEM) showed that anaerobic extracellular polymeric substances (EPS) expression led the proportion of hydroxylapatite in the precipitates increased. As the first report on the anaerobic MICP to remove F-, it provides a theoretical basis for the remediation of F-, Ca2+, and NO3--N in groundwater.

15.
Bioresour Technol ; 341: 125803, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455245

RESUMO

A newly isolated strain Phoma sp. ZJ6, which could form fungal pellet (FP) by self-immobilization, was identified. A novel longan seed biochar embedded in FP (BFP) combined with strain H29 (BFP-H29) effectively improved the Cd(II) removal efficiency and simultaneously removed nitrate. The adsorption process of BFP was well fitted with the pseudo-second-order kinetics model and Langmuir isotherm model, which demonstrated that the adsorption process was favorable and mainly dominated by chemisorption. Compared with single FP, biochar, and strain H29, BFP-H29 significantly enhanced the Cd(II) removal and the removal ratio reached 90.47%. Meanwhile, the simultaneous removal efficiency of the BFP-H29 for nitrate could reach 93.80%. Characterization analysis demonstrated that the primary removal mechanisms of BFP-H29 were precipitation and surface complexation. BFP-H29 had excellent performance in simultaneous removal of Cd(II) and nitrate, indicating its potential as a promising composite in the removal of cadmium and nitrate in wastewater.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Nitratos , Poluentes Químicos da Água/análise
16.
Arch Virol ; 166(11): 3049-3059, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448937

RESUMO

The incidence rate of hepatitis C virus (HCV) infection in Pakistan is very high. In this study, we evaluated the genetic heterogeneity of HCV hypervariable region 1 (HVR1) from the HCV-infected Pakistani population and compare the isolated genotypes with representative sequences from internationally diverse geographic regions. We also investigated potential transmission events in non-high-risk HCV patients. Next-generation sequencing (NGS) data from the E1-HVR1 region from 30 HCV patients were used for phylogenetic analysis. Reference sequences were retrieved from the Los Alamos HCV and GenBank databases. NGS data were analyzed to examine HCV HVR1 sequence diversity and identify transmission links among HCV-infected individuals using Global Hepatitis Outbreak and Surveillance Technology (GHOST). Phylogenetic analysis showed the predominance of HCV genotype 3a (86.6%), followed by 1a (6.6%), 1b (3.3%), and 3b (3.3%). NGS of HVR1 displayed significant genetic heterogeneity of HCV populations within each patient. The average nucleotide sequence diversity for HVR1 was 0.055. JR781281 was found to be the most diverse (0.14) of the specimens. Phylogenetic analysis demonstrated that all HCV specimens sequenced in this study were more similar to each other and showed variations from the representative sequences. The GHOST results suggested genetic relatedness between two (6.6%) HCV cases, possibly defining an incipient outbreak in a non-high-risk population. We urge rigorous countrywide investigation of outbreaks to identify transmission clusters and their sources to incorporate preventive measures for disease control.

17.
Virus Res ; 305: 198547, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34425163

RESUMO

Encephalomyocarditis virus (EMCV) is a small, non-enveloped, single stranded RNA virus which infects a wide variety of mammalian species, and has zoonotic importance. Many host proteins are known to regulate EMCV proliferation by interacting with its structural or nonstructural proteins, but the regulatory role and mechanism of heat shock protein 90ß (HSP90ß), in EMCV infection has not been reported yet. Here, we report that overexpression of HSP90ß significantly promotes the growth and proliferation of EMCV in vitro. On the contrary, down-regulation of HSP90ß by RNAi or geldanamycin inhibits EMCV replication. HSP90ß suppresses IFN-ß responses in the RLRs pathway by targeting the expression of the key adaptor molecules MAVS, TBK1, and IRF3, but not MDA5. This study demonstrates the firsthand information that HSP90ß plays a positive role in viral proliferation by inhibiting EMCV induced IFN-ß production. Collectively, the results reveal new insights into HSP90ß-assisted progression of EMCV infection.

18.
Environ Toxicol Pharmacol ; 87: 103722, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391907

RESUMO

We assessed metal/metalloid pollutants (through multi-indices) in seawater, sediments, tissues and shells of gastropods using various indices such as contamination degree (modified/unmodified; Cd/mCd; 1875/187.5). From sediment indices; e.g. the potential ecological risk index/enrichment factor (Eri/EF; 3396.8/105.5) indicated the area to be highly contaminated with metal/metalloid pollutants. Indeed, bioaccumulation with these materials was gastropod size dependent. Antimicrobial and percentage activity indices (AMI/PAI) for; T. telescopium was (AMI/PAI; 1.59/159), N. albicilla (1.14/114) and L. coronata (0.95/95) against E. coli. Similarly T. telescopium (1.33/133), N. albicilla (1.19/119) and L. coronata (1.14/114) have AMI/PAI against A. terreus. The total activity index (TAI), for T. telescopium was the highest, while L. coronata has lowest for all pathogens. This study indicates, T. telescopium, N. albicilla and L. coronata, surviving under metal/metalloid stress exhibited altered natural defense to pathogens which was related to the degree of toxin bioaccumulation.


Assuntos
Arsênio/metabolismo , Gastrópodes/metabolismo , Metais/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Arsênio/análise , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bioacumulação , Tamanho Corporal , Misturas Complexas/farmacologia , Monitoramento Ambiental , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Gastrópodes/química , Sedimentos Geológicos/análise , Metais/análise , Poluentes Químicos da Água/análise
19.
Plant Dis ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34340561

RESUMO

Fig (Ficus carica) is a species of flowering plants within the mulberry family. During June 2020, leaf spots were observed on several fig plants (31°26'15.0"N 73°04'25.6"E) at the University of Agriculture, Faisalabad, Pakistan. Early symptoms were small, oval to circular, light brown, sunken spots that were uniformly distributed on the leaves. Spots gradually enlarged and coalesced into circular to irregular dark brown to black spots that could be up to 3cm diam. with no or small sized fruit. Disease incidence was approximately 25%. To identify the causal agent of the disease, 15 symptomatic leaves were collected. Small pieces from all diseased samples were removed from the margin between healthy and diseased tissues were surface disinfested in 70% ethanol for 2 min, rinsed three times with sterile distilled water, plated on Potato dextrose agar and incubated at 25 ± 2°C with a 12-h photoperiod. Fungal isolation on PDA medium frequency was 95% from diseases leaves. Morphological observations were made on 7- day- old single-spore cultures. The colonies initially appeared light grayish which turned sooty black in color. All fungal isolates were characterized by small, short-beaked, multicellular conidia. The conidia were ellipsoidal or ovoid and measured 9 to 25 µm × 5 to 10 µm (n = 40) with longitudinal and transverse septa. The morphological characters matched those of Alternaria alternata (Simmons et al. 2007). Genomic DNA of a representative isolate (FG01-FG03) was extracted using DNAzol reagent (Thermo Fisher Scientific MA, USA) and PCR amplification of the internal transcribed spacer (ITS) rDNA region, was performed with primers ITS1/ITS4 (White et al. 1990), partial RNA polymerase II largest subunit (RPB2) with RPB2-5F/RPB2-7cR (Liu et al. 1999) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene regions was performed with gpd1/gpd2 (Berbee et al. 1999). The obtained sequences were deposited in GenBank with accession numbers MW692903.1 to MW692905.1 for ITS-rDNA gene, MZ066731.1 to MZ066733.1 for RPB2 and MZ066728.1 to MZ066730.1 for GAPDH. BLASTn analysis showed 100% identity with the submitted sequences of A. alternata for ITS rDNA, RPB2, and GAPDH. To confirm pathogenicity, 2-month-old 15 healthy potted F. carica plants were sprayed at true leaf stage with conidial suspension by using an atomizer in a greenhouse. Each representative A. alternata isolate (FG01-FG03) was inoculated on every three plants with conidial suspensions (106 conidia/ml; obtained from 1-week-old cultures) amended with 0.1% (vol/vol) of Tween 20 until runoff (1.5 to 2 ml per plant) whereas, three control plants were sprayed with sterile distilled water amended with 0.1% Tween 20. All plants were incubated at 25 ± 2°C in a greenhouse, and the experiment was conducted twice. After 10 days of inoculation, each isolate induced leaf spots similar to typical spots observed in the field, whereas the control plants remained symptomless. The fungus was re-isolated from symptomatic tissues and reisolation frequency was 100%. Re-isolated fungal cultures were again morphologically and molecularly identical to A. alternata, thus fulfilling Koch's postulates. Previously, A. alternata has been reported cause fruit disease of fig in Pakistan and California, USA (Alam et al. 2021; Latinovic et al. 2014). To our knowledge, this is the first report of A. alternata causing leaf spot on common fig in Pakistan. In Pakistan, fig is widely grown for drying, and this disease may represent a threat to fig cultivation.

20.
Biochimie ; 190: 24-35, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34242726

RESUMO

Over the past decades, much have been learned about HIV-1 virus and its molecular strategies for pathogenesis. However, HIV-1 still remains an enigmatic virus, particularly because of its unique proteins. Establishment of latency and reactivation is still a puzzling question and various temporal and spatial dynamics between HIV-1 proteins itself have given us new way of thinking about its pathogenesis. HIV-1 replication depends on Tat which is a small unstructured protein and subjected to various post-translational modifications for its myriad of functions. HIV-1 Tat protein modulates the functions of various strategic cellular pathways like proteasomal machinery and inflammatory pathways to aid in HIV-1 pathogenesis. Many of the recent findings have shown that Tat is associated with exosomes, cleared from HIV-1 infected cells through its degradation by diverse routes ranging from lysosomal to proteasomal pathways. HIV-1 Tat was also found to be associated with other HIV-1 proteins including Vpr, Nef, Nucleocapsid (NC) and Rev. Interaction of Tat with Vpr and Nef increases its transactivation function, whereas, interaction of Tat with NC or Rev leads to Tat protein degradation and hence suppression of Tat functions. Research in the recent years has established that Tat is not only important for HIV-1 promoter transactivation and virus replication but also modulating multiple cellular and molecular functions leading to HIV-1 pathogenicity. In this review we discussed various transcriptional and non-transcriptional HIV-1 Tat functions which modulate host cell metabolism during HIV-1 pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...