Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 100: 103937, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32460178

RESUMO

In treating wounds, long lasting infection is considered the major impediment. Drugs are rendered ineffective by pathogenic microorganisms via antibiotic resistance and calls for designing and development of new drugs. Herein, we report synthesis of eight different N-alkylated pyridine-based organic salts QAS 1-8 and their antibacterial, antibiofilm and wound healing activities. 3-(2-R-hydrazinecarbonyl)-1-propylpyridinium Bromide was the parent compound while R group was varying in each salt composed of different aromatic aldehyde moieties. In the antibacterial activity against S. aureus and E. coli, amoxicillin shows IC50 near to 25 µg/mL inhibiting 58 ± 0.4% S. aureus while ceftriaxone inhibited 55 ± 0.5% E. coli at a concentration of 10 µg/mL. The highest IC50 (56 ± 0.5% against S. aureus; 55 ± 0.5% against E. coli) was shown by compound QAS 7 at the concentration of 100 µg/mL; followed by the QAS 6 (55 ± 0.5% against E. coli) and QAS 2 (55 ± 0.5% against E. coli). In the antibiofilm activity, QAS 6, QAS 1 and QAS 8 inhibited 58 ± 0.4% S. aureus at a concentration of 75 µg/mL, while QAS 2 inhibited E. coli at the same concentration and amount. QAS 7, 3 and 1 inhibited almost 90% while QAS 6 inhibited 95 ± 1.1%of E. coli at a concentration of 250 µg/mL. Highest MBIC was provided by QAS 7 (52 ± 0.4%) against S. aureus at a concentration of 50 µg/mL that is very near to the standard amoxicillin. Antibacterial and antibiofilm activity results were also supported by the atomic force microscopy (AFM). In the wound healing activity, QAS 8 healed 90.8 ± 4.3% of the wound in 21 days with an average period of epithelialization (POE) of 19 ± 1.4 days; that is far better than povidone iodine ointment (81.5 ± 3.3% of the wound in the 21 days with 22.4 ± 2.9 days of POE). It is concluded from this study that the synthesized compounds QAS 2, 7 and 8 can be used for further mechanistic studies to be employed as antibacterial, antibiofilm and wound healing agents.

2.
Chem Phys Lipids ; 228: 104894, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32126217

RESUMO

Numerous nanotechnological approaches have been widely practiced to improve the bioavailability of less aqueous soluble drugs; phospholipid based vesicles (liposomes) being the most widely applied drug delivery system. However; due to stability issues, large scale production limitations, sterilization and long term storage problems; non-ionic surfactant based vesicles (niosomes) are considered their excellent counterparts. Niosomes are vesicles of non-ionic surfactants having the ability to carrying both hydrophilic and hydrophobic drugs in their inner aqueous or lipid bilayer compartments. In this research work, triazole based non-ionic surfactant (TBNIS) was synthesized and characterized by different spectroscopic techniques and then screened for biocompatibility using NIH 3T3 cell line, blood hemolysis assay and acute toxicity in mice. The synthesized surfactant was then checked for niosomes' formation, Amphotericin B loading and entrapment efficiency, drug release, stability and bioavailability of the drug was assessed and compared with free drug solution. The synthesized surfactant was found biocompatible and caused less blood hemolysis, greater cell vial ability and negligible toxicity in animals. The size of drug loaded niosomal vesicles of TBNIS based surfactant was 179.9 ± 3.23 nm with smaller size distribution i.e. 0.29 ± 0.02. The triazole based surfactant vesicles showed 88.76 ± 3.45 % drug entrapment efficiency, sustained drug release profile and stability. The drug in TBNIS based vesicles has greater oral bioavailability 0.099 ± 0.03 as compared to plan drug solution 0.012 ± 0.023 µg/mL. Results of this study suggests that the newly synthesized triazole based surfactant can be used in drug delivery for improving bioavailability of less water soluble drugs like Amphotericin B.

3.
Colloids Surf B Biointerfaces ; 186: 110676, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838269

RESUMO

Amphiphilic calixarenes are preferred to generate nano-cargos for drugs due to their stability, possibilities for modification and intrinsic host cavities. Here we are reporting the synthesis of amphiphilic calixarene and its evaluation as drug delivery system. Water soluble amphiphilic p-sulfonatocalix[6]arene was synthesized through sulfonation and lipophilic conjugation on its upper and lower rims respectively. The synthesized amphiphile self-assembled into nanostructures in the presence of Clarithromycin and FITC as model hydrophobic drugs followed by a wide range of characterization. Clarithromycin loaded self-assembled nanostructures was screened for its bactericidal potential in resistant S. pneumonia through various in-vitro assays. The amphiphilic calixarene self-assembled into polydispersed nanostructures with 136.45 ±â€¯2.41 nm mean diameter and -49.93 ±â€¯0.35 mV surface charges. The amphiphile was capable to load Clarithromycin (57.54 ±â€¯1.88 %) and fluorescent dye and was highly stable. Clarithromycin loaded nanostructures revealed significant biofilm and bacterial growth inhibition and cell destruction properties. Results authenticate calixarene amphiphile as an efficient nano-carrier for improving Clarithromycin efficacy.

4.
Polymers (Basel) ; 11(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382528

RESUMO

Numerous jets can be generated simultaneously on a nozzle by needleless melt electrospinning technology which has the advantages of solvent-free residues and environmental friendliness; and potential industrial application prospects. In this paper, the linear annular tip nozzle was taken as the research object, and the high-speed image acquisition of the jets generation and distribution process of annular tip nozzle was carried out and compared with that of straight-line tip nozzle. The results showed that the repulsive force between the jets caused a slight adjustment in the position of the jets on the free surface, the force between the jets on the annular closed curve canceled each other and eventually reached the equilibrium state, making the position of the jets stable and the distance between the jets the same, and the distance between the jets was related to the intensity of the induced electric field at the tip of the nozzle. Relevant conclusions can provide scientific and practical guidance for the design of needleless electrospinning nozzles on free surface in order to achieve uniform and efficient preparation of ultrafine fibers.

5.
Mater Sci Eng C Mater Biol Appl ; 103: 109852, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349434

RESUMO

This review article discusses advancement in electro-stimulated gel, recent perspectives in materials selectivity in electro-simulated gels, the gel deformation mechanism, and their applications in various advanced fields. This paper also considered the challenges associated with chemistry, drying process and mechanics of electro-responsive gels and proposed future opportunities to further advance the science and technology of these gel-based devices. More specifically this review summarized novel materials capable of producing an elevated response to low energy stimuli that are being extensively studied globally in recent years. Subsequently, the electro-response gels formulated by reinforcing selective materials such as electro-active polymers, conductive polymers, and piezoelectric materials were discussed. These gels are stimulated by application of low dosage of an electrical field to enhance their inherent mechanical and responsive attributes. This article further reviewed the theoretical understanding of simulation of some exclusive response parameters and forces to describe the deformation mechanism of electro-response materials. The major findings of the study are better understanding of the nature of gels to be used for the wearable artificial muscles, sensors, actuators, robotics, lenses, biomedical and as soft materials, their dependence on the material type, device response behaviour in the electro-stimulated field and their stability under various end use conditions. The graphic art shown below depicts the main functions of the reviewed gels, their mechanism of function depending on the applications. It is anticipated that the development of the soft electro-simulated materials is going to grow in future due to expansion of the use of artificial intelligence in devices including robotics.


Assuntos
Materiais Biocompatíveis , Condutividade Elétrica , Eletricidade , Polímeros/química , Géis
6.
J Liposome Res ; : 1-8, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31185766

RESUMO

Nonionic surfactants have an extraordinary fascination for the researchers in the field of drug delivery for enhancing drug bioavailability and therapeutic efficacy. Here, we are reporting the synthesis, characterization, drug entrapment efficiency (EE), critical micellar concentration, and biocompatibility evaluation of sulphanilamide based new nonionic surfactants. The surfactants were synthesized in single step reactions and characterized through 1H NMR, FT-IR, and mass spectrometric analysis. The surfactants abilities for niosomal vesicles formation were investigated utilizing Ciprofloxacin as a model drug. The drug loaded niosomal suspension of the synthesized surfactants was screened for shape; size, polydispersity index, and drug EE utilizing AFM, Zetasizer, and UV, respectively. The compatibility of the drug in drug loaded vesicles with excipients was assessed utilizing FT-IR spectroscopy. The biocompatibility of the synthesized surfactants was assessed through blood haemolysis and cell cytotoxicity assays. Results of this study showed that the synthesized surfactants were quite haemocompatible and nontoxic in nature and were able to form spherical vesicles. The size and drug EE of the vesicles were dependant on the length of surfactant aliphatic chain. Surfactant with long aliphatic chain was more efficient in entrapping the drug and could be used as a potential vesicular drug delivery vehicle for improving the lipophilic drug's bioavailability.

7.
Plant Cell Rep ; 38(7): 793-801, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30968200

RESUMO

KEY MESSAGE: Arabidopsis GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil by enhanced activity and transcriptional levels of antioxidant enzymes Chloroplast biogenesis is blocked by retrograde signaling triggered by diverse internal and external cues, including sugar, reactive oxygen species (ROS), phytohormones, and abiotic stress. Efficient chloroplast biogenesis is essential for crop productivity due to its effect on photosynthetic efficiency, and is associated with agronomic traits such as insect/disease resistance, herbicide resistance, and abiotic stress tolerance. Here, we show that the circadian clock-controlled gene GIGANTEA (GI) regulates chloroplast biogenesis in Arabidopsis thaliana. The gi-2 mutant showed reduced sensitivity to the chloroplast biogenesis inhibitor lincomycin, maintaining high levels of photosynthetic proteins. By contrast, wild-type and GI-overexpressing plants were sensitive to lincomycin, with variegated leaves and reduced photosynthetic protein levels. GI is degraded by lincomycin, suggesting that GI is genetically linked to chloroplast biogenesis. The GI mutant alleles gi-1 and gi-2 were resistant to the herbicide butafenacil, which inhibits protoporphyrinogen IX oxidase activity and triggers ROS-mediated cell death via the accumulation of chlorophyll precursors. Butafenacil-mediated accumulation of superoxide anions and H2O2 was not detected in gi-1 or gi-2, as revealed by histochemical staining. The activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were 1.2-1.4-fold higher in both gi mutants compared to the wild type. Finally, the expression levels of antioxidant enzyme genes were 1.5-2-fold higher in the mutants than in the wild type. These results suggest that GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil, providing evidence for a genetic link between GI and chloroplast biogenesis, which could facilitate the development of herbicide-resistant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Herbicidas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Pirimidinas/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo
8.
Artif Cells Nanomed Biotechnol ; 46(sup3): S1204-S1214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453792

RESUMO

Supramolecular macrocycles-based drug delivery systems are receiving wider recognition due to their self-assembly into nanostructures with unique characteristics. This study reports synthesis of resorcinarene-based novel and biocompatible amphiphilic supramolecular macrocycle that self-assembles into nano-vesicular system for Amphotericin B (Am-B) delivery, a model hydrophobic drug. The macrocycle was synthesized through a two-step reaction and was characterized with 1 H NMR and mass spectrometric techniques. Its biocompatibility was assessed in cancer cell lines, blood and animals. Its critical micelle concentration (CMC) was determined using UV spectrophotometer. Am-B loaded in novel macrocycle-based vesicles were examined according to their shape, size, surface charge, drug entrapment efficiency and excepients compatibility using atomic force microscope (AFM), Zetasizer, HPLC and FT-IR spectroscopy. Drug-loaded vesicles were also investigated for their in-vitro release, stability and in-vivo oral bioavailability in rabbits. The macrocycle was found to be nontoxic against cancer cells, haemo-compatible and safe in mice and revealed lower CMC. It formed mono-dispersed spherical shape vesicles of 174.4 ± 3.78 nm in mean size. Vesicles entrapped 92.05 ± 4.39% drug and were stable upon storage with gastric-simulated fluid and increased the drug oral bioavailability in rabbits. Results confirmed novel macrocycle as biocompatible vesicular nanocarrier for enhancing the oral bioavailability of lipophilic drugs.


Assuntos
Anfotericina B , Portadores de Fármacos , Nanopartículas , Administração Oral , Anfotericina B/química , Anfotericina B/farmacocinética , Anfotericina B/farmacologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Camundongos , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/uso terapêutico , Coelhos
9.
Toxicol Res (Camb) ; 7(5): 771-778, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30310655

RESUMO

Biocompatible surfactants are of diverse pharmaceutical interest due to their ability to self-assemble into nano-particulate systems which can be used for single-step drug loading, based upon the hydrophobic-hydrophobic interaction between a hydrophobic drug and the lipophilic part of a surfactant molecule. However, surfactants are associated with cytotoxicity and hemolysis due to their amphiphilic interaction with cellular membranes. This study reports a novel membrane-compatible surfactant, synthesized from sulfanilamide and its self-micellization into niosomes. The surfactant was synthesized in a single step reaction via the introduction of an alkyl chain in the sulfanilamide moiety by conjugation with deconyl chloride. The synthesized surfactant (S-SDC) was characterized by 1H and 13C NMR, mass spectrometry and single crystal XRD. The S-SDC niosomes were explored for drug delivery with clarithromycin as a model drug. The biocompatibility of the surfactant was investigated through hemolysis and cytotoxicity. The surfactant presented a very low critical micellar concentration (CMC) of 0.04 mM and entrapped 65% of the drug which was released in a sustained manner, over 12 h, at acidic and physiological pH. The vesicles were spherical in shape with 234 ± 3.61 nm mean diameter and a narrow size distribution. Niosomes were hemocompatible and nontoxic to cellular membrane. The results suggested the sulfanilamide based surfactant can be applied as a novel and cell membrane compatible niosomal drug delivery vehicle.

10.
Carbohydr Polym ; 194: 89-96, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801862

RESUMO

Nano-carriers are excellent systems for improving bioavailability of poor aqueous soluble drugs. This study focuses fabrication of lecithin-gum tragacanth muco-adhesive hybrid NPs for enhancing Amphotericin B (AmpB) oral bioavailability. AmpB loaded lecithin NPs were synthesized through solvent diffusion method. Green synthesis of stable muco-adhesive gum tragacanth (GT) gold NPs was confirmed through UV-vis spectrophotometer and FT-IR. AmpB loaded lecithin NPs hybrid with GT gold NPs were characterized for shape, size, polydispersity index (PDI), zeta potential, drug entrapment efficiency and drug-excepients interactions using atomic force microscope (AFM), zetasizer, UV-vis spectrophotometer and FT-IR respectively. In-vivo bioavailability of AmpB loaded in NPs was investigated in rabbits. AmpB loaded muco-adhesive NPs were found polydispersed with 358.3 ±â€¯1.78 nm mean size and -19.9 ±â€¯0.51 mV zeta potential. They entrapped 78.91 ±â€¯2.44% AmpB and enhanced its oral bioavailability in animals. Results reveal the hybrid NPs as efficient carriers for enhancing AmpB oral bioavailability in controlled manner.


Assuntos
Anfotericina B/farmacocinética , Antiprotozoários/farmacocinética , Lecitinas/química , Tragacanto/química , Adesivos/síntese química , Adesivos/química , Administração Oral , Anfotericina B/administração & dosagem , Anfotericina B/química , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Disponibilidade Biológica , Difusão , Portadores de Fármacos/química , Tamanho da Partícula , Coelhos , Propriedades de Superfície , Tragacanto/síntese química
11.
Carbohydr Polym ; 174: 243-252, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821064

RESUMO

Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin.

12.
Drug Dev Ind Pharm ; 43(6): 1011-1022, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28157445

RESUMO

CONTEXT: Novel, safe, efficient and cost effective nano-carriers from renewable resources have got greater interest for enhancing solubility and bioavailability of hydrophobic dugs. OBJECTIVES: This study reports the synthesis of a novel biocompatible non-phospholipid human metabolite "Creatinine" based niosomal delivery system for Azithromycin improved oral bioavailability. METHODS: Synthesized surfactant was characterized through spectroscopic and spectrometric techniques and then the potential for niosomal vesicle formation was evaluated using Azithromycin as model drug. Drug loaded vesicles were characterized for size, polydispersity index (PDI), shape, drug encapsulation efficiency (EE), in vitro release and drug-excipient interaction using zetasizer, atomic force microscope (AFM), LC-MS/MS and FTIR. The biocompatibility of surfactant was investigated through cells cytotoxicity, blood hemolysis and acute toxicity. Azithromycin encapsulated in niosomes was investigated for in vivo bioavailability in rabbits. RESULTS: The vesicles were spherical with 247 ± 4.67 nm diameter hosting 73.29 ± 3.51% of the drug. Surfactant was nontoxic against cell cultures and caused 5.80 ± 0.51% hemolysis at 1000 µg/mL. It was also found safe in mice up to 2.5 g/kg body weight. Synthesized surfactant based niosomal vesicles revealed enhanced oral bioavailability of Azithromycin in rabbits. CONCLUSIONS: The results of the present study confirm that the novel surfactant is highly biocompatible and the niosomal vesicles can be efficiently used for improving the oral bioavailability of poor water soluble drugs.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Azitromicina/administração & dosagem , Azitromicina/farmacocinética , Creatinina/química , Animais , Disponibilidade Biológica , Células Cultivadas , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Lipossomos , Camundongos , Tamanho da Partícula , Tensoativos/química
13.
Artif Cells Nanomed Biotechnol ; 45(7): 1440-1451, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27822958

RESUMO

Novel, safe, efficient, and cost effective surfactants from renewable resources has attracted attention for enhancing solubility and bioavailability of hydrophobic dugs. We report the synthesis, characterization, and biocompatibility of a novel non-ionic acyl glycoside double-tailed surfactant for niosomal drug delivery system. Structure of the surfactant was confirmed by 1H NMR and mass spectroscopy. Applications of surfactant in niosomal drug delivery were explored using Cefixime as model. The shape, size, and polydispersity index (PDI) of drug loaded vesicles were investigated with atomic force microscope (AFM) and dynamic light scattering (DLS). Drug entrapping efficiency (EE%) was determined using HPLC. Biocompatibility of the surfactant was evaluated by in vitro cytotoxicity, blood hemolysis, and in vivo acute toxicity. Bioavailability of the surfactant based formulation was investigated in rabbits using HPLC. Vesicles were found to be 159.76 ± 6.54 nm with narrow size distribution and spherical shape. EE% was found to be 71.39 ± 3.52%. Novel surfactant was non-cytotoxicity and hemo-compatible even at 1000 µg/mL concentration and was safe up to 2000 mg/kg body weight. The in vivo bioavailability of niosomal formulation showed elevated plasma concentration and decreased clearance of Cefixime. Current findings reveal that this novel surfactant is biocompatible and could be employed for niosomal drug delivery.


Assuntos
Cefixima/administração & dosagem , Cefixima/farmacocinética , Portadores de Fármacos/química , Glicosídeos/química , Lipossomos/química , Animais , Disponibilidade Biológica , Cefixima/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Lipossomos/toxicidade , Masculino , Teste de Materiais , Camundongos , Coelhos
14.
Drug Deliv ; 23(9): 3653-3664, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27886514

RESUMO

CONTEXT: Vesicular systems have attracted great attention in drug delivery because of their amphiphilicity, biodegradability, non-toxicity and potential for increasing drug bioavailability. OBJECTIVE: A novel sugar-based double-tailed surfactant containing renewable block was synthesized for preparing niosomal vesicles that could be exploited for Levofloxacin encapsulation, aiming to increase its oral bioavailability. MATERIALS AND METHODS: The surfactant was characterized by 1H NMR, mass spectroscopy and Fourier transform infrared spectroscopy (FT-IR). Its biocompatibility was studied against cell cultures and human blood hemolysis. In vivo acute toxicity was evaluated in mice. The vesicle morphology, size, drug-excipients interaction and entrapment efficiency (EE) were examined using atomic force microscope (AFM), dynamic light scattering (DLS), FT-IR and HPLC. Oral bioavailability studies of Levofloxacin in surfactant-based niosomal formulation were carried out using rabbits and plasma samples were analyzed using HPLC. RESULTS AND DISCUSSION: Vesicles were spherical in shape and the size was 190.31 ± 4.51 nm with a polydispersity index (PDI) of 0.29 ± 0.03. The drug EE in niosomes was 68.28 ± 3.45%. When applied on cell lines, high cell viability was observed even after prolonged exposure at high concentrations. It caused 5.77 ± 1.34% hemolysis at 1000 µg/mL and was found to be safe up to 2000 mg/kg. Elevated Levofloxacin plasma concentration was achieved when delivered with novel vesicles. CONCLUSION: The surfactant was demonstrated to be safe and effective as carrier of Levofloxacin. The study suggests that this sugar-based double-tailed nonionic surfactant could be promising nano-vesicular system for delivery and enhancing oral bioavailability of the hydrophobic Levofloxacin.


Assuntos
Portadores de Fármacos/química , Levofloxacino/administração & dosagem , Levofloxacino/química , Lipossomos/química , Nanopartículas/química , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Feminino , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Levofloxacino/metabolismo , Masculino , Camundongos , Células NIH 3T3 , Nanopartículas/administração & dosagem , Tamanho da Partícula , Tensoativos/química
15.
Drug Deliv ; 23(9): 3480-3491, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27247018

RESUMO

CONTEXT: Nonionic surfactant vesicles have gained increasing scientific attention for hydrophobic drugs delivery due to their biocompatibility, stability and low cost. OBJECTIVE: The aim of the present study was to synthesize and evaluate a novel creatinine-based nonionic surfactant in terms of its ability to generate biocompatible niosomal system for the delivery of Clarithromycin. MATERIALS AND METHODS: The surfactant was synthesized by reacting creatinine with lauroyl chloride followed by characterization using 1HNMR and MS. The drug-loaded niosomal vesicles of the surfactant were characterized for drug encapsulation efficiency (EE) using LC-MS, vesicle size using dynamic light scattering (DLS) and vesicle shape using atomic force microscopy (AFM). The surfactant was also investigated for blood hemolysis, in vitro cytotoxicity against different cell lines and in vivo acute toxicity in mice. Furthermore, the in vivo bioavailability of Clarithromycin encapsulated in the novel niosomal formulation was investigated using rabbits and quantified through validated LC-MS/MS method. RESULTS AND DISCUSSION: Findings showed that vesicles were able to entrap up to 67.82 ± 1.27% of the drug, and were rounded in shape with a size around 202.73 ± 5.30 nm and low polydispersity. The surfactant caused negligible blood hemolysis, very low cytotoxicity and was found to be safe up to 2500 mg/kg body weight using mice. The niosomal formulation showed twofold enhanced oral bioavailability of Clarithromycin as compared to commercial formulations of the drug. CONCLUSION: The study has shown that the creatinine-based niosomes developed in our laboratory were biocompatible, safe and increased the oral bioavailability of the model hydrophobic Clarithromycin using experimental animals.


Assuntos
Materiais Biocompatíveis/química , Claritromicina/química , Claritromicina/metabolismo , Creatinina/química , Lipossomos/química , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Tensoativos/química
16.
Int J Pharm ; 505(1-2): 122-32, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27050867

RESUMO

This study aimed to evaluate the potential of a novel glycoside non-ionic surfactant synthesized and characterized in our laboratory for increased oral bioavailability of Cefixime. The surfactant was synthesized by simple etherification of bergenin with bromoundecane and characterized by (1)H NMR and mass spectroscopy (MS). Biocompatibility of the surfactant (BRM-BG) was assessed by in-vitro cytotoxicity against NIH/3T3 cells and human blood hemolysis. In-vivo acute toxicity was evaluated in mices. Cefixime loaded BRM-BG niosomes were investigated for drug entrapment efficiency using HPLC and surface morphology and vesicle size by atomic force microscopy (AFM) and dynamic light scattering (DLS). The in-vivo oral bioavailability and pharmacokinetics studies were carried out using rabbits. Cefixime loaded BRM-BG vesicles were spherical in the size range of 178.66±8.17nm with a polydipersity index (PDI) of 0.20±0.01, offering an entrapment efficiency as high as 78.4±0.83%. When the surfactant was applied on NIH 3T3 tissue culture, as high as 90.77±3.15% and 86.86±3.02%, cell viability at 1000µg/mL concentration after 24 and 48h respectively were observed. The surfactant also caused 5.49±1.62% haemolysis and was found to be safe at a dose up to 2000mg/kg. In-vivo drug plasma concentration (Cmax) was found to be 9.69±1.22µg/mL, much higher than that resulting from the intake of commercial suspension and capsules. BRM-BG demonstrated to be safe and effective as carrier of Cefixime following oral dosing in rabbits. The BRM-BG surfactant delivery nano-system is relatively safe and in animal models it is an appropriate carrier for Cefixime, offering enhanced bioavailability compared to commercially available formulations of the drug.


Assuntos
Antibacterianos/administração & dosagem , Cefixima/administração & dosagem , Portadores de Fármacos/química , Tensoativos/química , Administração Oral , Animais , Antibacterianos/farmacocinética , Benzopiranos/química , Disponibilidade Biológica , Cefixima/farmacocinética , Química Farmacêutica/métodos , Portadores de Fármacos/toxicidade , Difusão Dinâmica da Luz/métodos , Feminino , Glicosídeos/química , Humanos , Lipossomos , Masculino , Camundongos , Microscopia de Força Atômica/métodos , Células NIH 3T3 , Tamanho da Partícula , Coelhos , Tensoativos/toxicidade
17.
BMC Complement Altern Med ; 16: 29, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26810212

RESUMO

BACKGROUND: Ethnomedicinally Rumex hastatus D. Don has been used since long for various ailments especially in neurological disorders. The reported data and the importance of Rumex genus demonstrate the vital medicinal value of R. hastatus. METHODS: In the current investigational study, isolation of essential oil and its antioxidant and anticholinesterase assays were performed. The essential oil of R. hastatus was analyzed by GC-MS for the first time. The essential oil was evaluated for anticholinesterase and antioxidant assays. The anticholinesterase assay was conducted at various concentrations (62.5 to 1000 µg/ml) against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Similarly, the antioxidant potential was determined using DPPH and ABTS free radicals. RESULTS: The GC-MS analysis of essential oil showed 123 components. The result recorded for the anticholinesterase assays demonstrated a marked potential against AChE and BChE with IC50 values of 32.54 and 97.38 µg/ml respectively which were comparable with the positive control i.e., galanthamine (AChE, IC50 = 4.73 µg/ml and BChE, IC50 = 11.09 µg/ml). The antioxidant assays against DPPH and ABTS free radicals also exhibited significant scavenging potential with IC50 values of 3.71 and 6.29 µg/ml respectively, while for ascorbic acid the IC50 value was <0.1 µg/ml against both free radicals. CONCLUSIONS: Based on the current investigational studies, it may be concluded that R. hastatus is an effective source of essential oil's components having anticholinesterase and antioxidant potentials, which after subjecting to drug development may lead to novel drug candidates against neurodegenerative disorders.


Assuntos
Antioxidantes/análise , Inibidores da Colinesterase/análise , Rumex/química , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA