Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Genet Med ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33024317

RESUMO

PURPOSE: This study aimed to delineate the genetic basis of congenital ocular motor apraxia (COMA) in patients not otherwise classifiable. METHODS: We compiled clinical and neuroimaging data of individuals from six unrelated families with distinct clinical features of COMA who do not share common diagnostic characteristics of Joubert syndrome or other known genetic conditions associated with COMA. We used exome sequencing to identify pathogenic variants and functional studies in patient-derived fibroblasts. RESULTS: In 15 individuals, we detected familial as well as de novo heterozygous truncating causative variants in the Suppressor of Fused (SUFU) gene, a negative regulator of the Hedgehog (HH) signaling pathway. Functional studies showed no differences in cilia occurrence, morphology, or localization of ciliary proteins, such as smoothened. However, analysis of expression of HH signaling target genes detected a significant increase in the general signaling activity in COMA patient-derived fibroblasts compared with control cells. We observed higher basal HH signaling activity resulting in increased basal expression levels of GLI1, GLI2, GLI3, and Patched1. Neuroimaging revealed subtle cerebellar changes, but no full-blown molar tooth sign. CONCLUSION: Taken together, our data imply that the clinical phenotype associated with heterozygous truncating germline variants in SUFU is a forme fruste of Joubert syndrome.

2.
Am J Med Genet A ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048476

RESUMO

Genetic diseases are a major cause of neonatal morbidity and mortality. The clinical differential diagnosis in severely ill neonates, especially in premature infants, is challenging. Next generation sequencing (NGS) diagnostics is a valuable tool, but the turnaround time is often too long to provide a diagnosis in the time needed for clinical guidance in newborn intensive care units (NICU). To minimize turnaround time, we developed an ultra-rapid whole genome sequencing pipeline and tested it in clinical practice. Our pilot case, was a preterm infant presenting with several crises of dehydration, hypoglycaemia and hyponatremia together with nephrocalcinosis and hypertrophic cardiomyopathy. Whole genome sequencing was performed using a paired-end 2x75bp protocol. Sequencing data were exported after 50 sequencing cycles for a first analysis. After run completion, the rapid-sequencing protocol, a second analysis of the 2 x 75 paired-end run was performed. Both analyses comprised read-mapping and SNP-/indel calling on an on-site Edico Genome DRAGEN server, followed by functional annotation and pathogenicity prediction using in-house scripts. After the first analysis within 17 h, the emergency ultra-rapid protocol identified two novel compound heterozygous variants in the insulin receptor gene (INSR), pathogenic variants in which cause Donohue Syndrome. The genetic diagnosis could be confirmed by detection of hyperinsulinism and patient care adjusted. Nonetheless, we decided to pursue RNA studies, proving the functional effect of the novel splice variant and reduced expression levels of INSR in patients skin fibroblasts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32918381

RESUMO

Mild clinical phenotypes of ataxia-telangiectasia (variant A-T) are associated with biallelic ATM variants resulting in residual function of the ATM kinase. At least one regulatory, missense, or leaky splice site mutation resulting in expression of ATM with low level kinase activity was identified in subjects with variant A-T. Studies on the pathogenicity of the germline splicing ATM variant c.1066-6T>G have provided conflicting results. Using whole-exome sequencing, we identified two splice site ATM variants, c.1066-6T>G; [p.?], and c.2250G>A, [p.Ile709_Lys750del], in a compound heterozygous state in a 27-year-old woman who had been diagnosed as having congenital ocular motor apraxia type Cogan in her childhood. Reappraisal of her clinical phenotype revealed consistency with variant A-T. Functional analyses showed reduced expression of ATM protein and residual activity of the ATM kinase at a level consistent with variant A-T. Our results provide evidence for pathogenicity of the leaky ATM splice site variant c.1066-6T>G.

4.
Blood ; 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32959065

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic neoplasm. Differentiation stage and immune-effector functions of the underlying tumor cell are insufficiently characterized. Constitutive activation of the T-cell-leukemia-1A (TCL1A) oncogene distinguishes the (pre)leukemic cell from regular post-thymic T-cells. We assessed here activation-response patterns of the T-PLL lymphocyte and interrogated the modulatory impact by TCL1A. Immunophenotypic and gene expression profiles revealed a unique spectrum of memory-type differentiation of T-PLL with predominant central-memory stages and frequent non-canonical patterns. Virtually all T-PLL expressed a T-cell receptor (TCR) and/or CD28-coreceptor without overrepresentation of specific TCR-clonotypes. The highly activated leukemic cells also revealed losses of negative-regulatory TCR-coreceptors (e.g. CTLA4). TCR-stimulation of T-PLL cells evoked higher-than-normal cell-cycle transition and profiles of cytokine release that resembled those of normal memory T-cells. More activated phenotypes and higher TCL1A correlated with inferior clinical outcomes. TCL1A was linked to T-PLL's marked resistance to activation- and FAS-induced cell death. Enforced TCL1A enhanced phosho-activation of TCR-kinases, second-messenger generation, and JAK/STAT or NFAT transcriptional responses. This reduced the input thresholds for IL-2 secretion in a sensitizer-like fashion. Mice of TCL1A-initiated protracted T-PLL development resembled such features. When equipped with epitope-defined TCRs or CARs, these Lckpr-hTCL1Atg T-cells gained a leukemogenic growth advantage in scenarios of receptor stimulation. Overall, we propose a model of T-PLL pathogenesis in which TCL1A enhances TCR-signals and drives accumulation of death-resistant memory-type cells that utilize amplified low-level stimulatory input and whose loss of negative coregulators additionally maintains their activated state. Treatment rationales are provided by combined interception in TCR- and survival signaling.

5.
J Mol Diagn ; 22(10): 1300-1307, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745612

RESUMO

In newly diagnosed systemic diffuse large B-cell lymphoma, next-generation sequencing of plasma-derived cell-free DNA (cfDNA) detects somatic mutations as accurate as genotyping of the tumor biopsy. A distinct diffuse large B-cell lymphoma entity confined to the central nervous system is primary central nervous system lymphoma (PCNSL), which requires intracerebral biopsy and neuropathologic analysis to establish the diagnosis. So far, a biomarker for diagnosis and follow-up of PCNSL that can be investigated in blood has not been identified. This article addresses the question whether somatic mutations of the CD79B and MYD88 driver genes of PCNSL can be detected in cfDNA at disease diagnosis. Stereotactic biopsies and cfDNA of 27 PCNSL patients were analyzed for CD79B and MYD88 mutations. As control, cfDNA derived from six healthy volunteers was used. CD79B and MYD88 hot spot mutations were identified in 16 of 27 (59%) and 23 of 27 (85%) PCNSL biopsies, respectively, but only in 0 of 27 (0%) and 1 of 27 (4%) corresponding cfDNA samples, respectively. In cfDNA of one of four patients with Waldenstrom disease, as a further control, the MYD88 L265P mutation was readily detected, despite complete clinical remission. These data suggest that in PCNSL even if they carry such mutations, alterations of CD79B and MYD88 cannot be reliably detected in blood-derived cfDNA obtained before intracerebral biopsy.

6.
Nucleic Acids Res ; 48(15): 8626-8644, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32621609

RESUMO

The exon junction complex (EJC) is an essential constituent and regulator of spliced messenger ribonucleoprotein particles (mRNPs) in metazoans. As a core component of the EJC, CASC3 was described to be pivotal for EJC-dependent nuclear and cytoplasmic processes. However, recent evidence suggests that CASC3 functions differently from other EJC core proteins. Here, we have established human CASC3 knockout cell lines to elucidate the cellular role of CASC3. In the knockout cells, overall EJC composition and EJC-dependent splicing are unchanged. A transcriptome-wide analysis reveals that hundreds of mRNA isoforms targeted by nonsense-mediated decay (NMD) are upregulated. Mechanistically, recruiting CASC3 to reporter mRNAs by direct tethering or via binding to the EJC stimulates mRNA decay and endonucleolytic cleavage at the termination codon. Building on existing EJC-NMD models, we propose that CASC3 equips the EJC with the persisting ability to communicate with the NMD machinery in the cytoplasm. Collectively, our results characterize CASC3 as a peripheral EJC protein that tailors the transcriptome by promoting the degradation of EJC-dependent NMD substrates.


Assuntos
Proteínas de Neoplasias/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Éxons/genética , Técnicas de Inativação de Genes , Humanos , RNA Mensageiro/genética , Ribonucleoproteínas/genética
7.
Circulation ; 142(11): 1059-1076, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623905

RESUMO

BACKGROUND: Noonan syndrome (NS) is a multisystemic developmental disorder characterized by common, clinically variable symptoms, such as typical facial dysmorphisms, short stature, developmental delay, intellectual disability as well as cardiac hypertrophy. The underlying mechanism is a gain-of-function of the RAS-mitogen-activated protein kinase signaling pathway. However, our understanding of the pathophysiological alterations and mechanisms, especially of the associated cardiomyopathy, remains limited and effective therapeutic options are lacking. METHODS: Here, we present a family with two siblings displaying an autosomal recessive form of NS with massive hypertrophic cardiomyopathy as clinically the most prevalent symptom caused by biallelic mutations within the leucine zipper-like transcription regulator 1 (LZTR1). We generated induced pluripotent stem cell-derived cardiomyocytes of the affected siblings and investigated the patient-specific cardiomyocytes on the molecular and functional level. RESULTS: Patients' induced pluripotent stem cell-derived cardiomyocytes recapitulated the hypertrophic phenotype and uncovered a so-far-not-described causal link between LZTR1 dysfunction, RAS-mitogen-activated protein kinase signaling hyperactivity, hypertrophic gene response and cellular hypertrophy. Calcium channel blockade and MEK inhibition could prevent some of the disease characteristics, providing a molecular underpinning for the clinical use of these drugs in patients with NS, but might not be a sustainable therapeutic option. In a proof-of-concept approach, we explored a clinically translatable intronic CRISPR (clustered regularly interspaced short palindromic repeats) repair and demonstrated a rescue of the hypertrophic phenotype. CONCLUSIONS: Our study revealed the human cardiac pathogenesis in patient-specific induced pluripotent stem cell-derived cardiomyocytes from NS patients carrying biallelic variants in LZTR1 and identified a unique disease-specific proteome signature. In addition, we identified the intronic CRISPR repair as a personalized and in our view clinically translatable therapeutic strategy to treat NS-associated hypertrophic cardiomyopathy.

8.
EMBO Mol Med ; 12(9): e11908, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667137

RESUMO

Functional studies giving insight into the biology of circulating tumor cells (CTCs) remain scarce due to the low frequency of CTCs and lack of appropriate models. Here, we describe the characterization of a novel CTC-derived breast cancer cell line, designated CTC-ITB-01, established from a patient with metastatic estrogen receptor-positive (ER+ ) breast cancer, resistant to endocrine therapy. CTC-ITB-01 remained ER+ in culture, and copy number alteration (CNA) profiling showed high concordance between CTC-ITB-01 and CTCs originally present in the patient with cancer at the time point of blood draw. RNA-sequencing data indicate that CTC-ITB-01 has a predominantly epithelial expression signature. Primary tumor and metastasis formation in an intraductal PDX mouse model mirrored the clinical progression of ER+ breast cancer. Downstream ER signaling was constitutively active in CTC-ITB-01 independent of ligand availability, and the CDK4/6 inhibitor Palbociclib strongly inhibited CTC-ITB-01 growth. Thus, we established a functional model that opens a new avenue to study CTC biology.

9.
Genome Med ; 12(1): 54, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580754

RESUMO

Cell-free DNA (cfDNA) analysis has become essential in cancer diagnostics and prenatal testing. We present cfNOMe, a two-in-one method of measuring cfDNA cytosine methylation and nucleosome occupancy in a single assay using non-disruptive enzymatic cytosine conversion and a custom bioinformatic pipeline. We show that enzymatic cytosine conversion better preserves cfDNA fragmentation information than does bisulfite conversion. Whereas previously separate experiments were required to study either epigenetic marking, cfNOMe delivers reliable results for both, enabling more comprehensive and inexpensive epigenetic cfDNA profiling. cfNOMe has the potential to advance biomarker discovery and diagnostic usage in diseases with systemic perturbations of cfDNA composition.

10.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32483341

RESUMO

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.

11.
Am J Hum Genet ; 107(1): 34-45, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497488

RESUMO

IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.


Assuntos
Artrogripose/genética , Mutação/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Humanos , Ceratose/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
13.
J Neurol ; 267(9): 2533-2545, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32367296

RESUMO

OBJECTIVE: Genetic risk factors for unruptured intracranial aneurysms (UIA) and aneurysmal subarachnoid hemorrhage (aSAH) are poorly understood. We aimed to verify recently reported risk genes and to identify novel sequence variants involved in the etiology of UIA/aSAH. METHODS: We performed exome sequencing (ES) in 35 unrelated individuals and 3 family members, each with a history of UIA and/or aSAH. We searched for sequence variants with minor allele frequency (MAF) ≤ 5% in the reported risk genes ADAMTS15, ANGPTL6, ARHGEF17, LOXL2, PCNT, RNF213, THSD1 and TMEM132B. To identify novel putative risk genes we looked for unknown (MAF = 0) variants shared by the three relatives. RESULTS: We identified 20 variants with MAF ≤ 5% in 18 individuals: 9 variants in PCNT (9 patients), 4 in RNF213 (3 patients), 3 in THSD1 (6 patients), 2 in ANGPTL6 (3 patients), 1 in ADAMTS15 (1 patient) and 1 in TMEM132B (1 patient). In the affected family, prioritization of shared sequence variants yielded five novel putative risk genes. Based on predicted pathogenicity of identified variants, population genetics data and a high functional relevance for vascular biology, EDIL3 was selected as top candidate and screened in additional 37 individuals with UIA and/or aSAH: a further very rare EDIL3 sequence variant in two unrelated sporadic patients was identified. CONCLUSIONS: Our data support a role of sequence variants in PCNT, RNF213 and THSD1 as susceptibility factors for cerebrovascular disease. The documented function in vascular wall integrity, the crucial localization of affected amino acids and gene/variant association tests suggest EDIL3 as a further valid candidate disease gene for UIA/aSAH.

15.
Neuron ; 107(2): 306-319.e9, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32407670

RESUMO

Melanin-concentrating hormone (MCH)-expressing neurons are key regulators of energy and glucose homeostasis. Here, we demonstrate that they provide dense projections to the median eminence (ME) in close proximity to tanycytes and fenestrated vessels. Chemogenetic activation of MCH neurons as well as optogenetic stimulation of their projections in the ME enhance permeability of the ME by increasing fenestrated vascular loops and enhance leptin action in the arcuate nucleus of the hypothalamus (ARC). Unbiased phosphoRiboTrap-based assessment of cell activation upon chemogenetic MCH neuron activation reveals MCH-neuron-dependent regulation of endothelial cells. MCH neurons express the vascular endothelial growth factor A (VEGFA), and blocking VEGF-R signaling attenuates the leptin-sensitizing effect of MCH neuron activation. Our experiments reveal that MCH neurons directly regulate permeability of the ME barrier, linking the activity of energy state and sleep regulatory neurons to the regulation of hormone accessibility to the ARC.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Hormônios Hipotalâmicos/fisiologia , Eminência Mediana/fisiologia , Melaninas/fisiologia , Neurônios/fisiologia , Hormônios Hipofisários/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Vasos Sanguíneos/fisiologia , Capilares/fisiologia , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Células Endoteliais/fisiologia , Leptina/fisiologia , Eminência Mediana/irrigação sanguínea , Camundongos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese
16.
Hum Genet ; 139(11): 1363-1379, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424618

RESUMO

We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.


Assuntos
Deficiência Intelectual/genética , Linfocinas/genética , Mutação/genética , Anormalidades Múltiplas/genética , Adolescente , Animais , Criança , Éxons/genética , Humanos , Masculino , Fenótipo , Isoformas de Proteínas/genética , Síndrome , Fatores de Transcrição/genética
17.
Clin Genet ; 98(1): 32-42, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32279305

RESUMO

Nonsyndromic hearing loss is an extremely heterogeneous disorder. Thus, clinical diagnostics is challenging, in particular due to differences in the etiology of hearing loss between populations. With this study, we wanted to elucidate the genetic basis of hearing loss in 61 consanguineous Egyptian families. In 25 families, linkage analysis was used as a prescreening to identify regions for targeted sequencing of candidate genes. Initially, the coding regions of 12 and later of 94 genes associated with hearing loss were enriched and subjected to massively parallel sequencing (MPS) with diagnostic yields of 36% and 75%, respectively. Causative variants were identified in 48 families (79%). They were found in 23 different genes with the majority being located in MYO15A (15.3%), SLC26A4 (9.7%), GJB2 (8.3%), and MYO7A (6.4%). As many as 32 variants were novel ones at the time of detection. Five variants were shared by two, three, or even four families. Our study provides a first survey of the mutational spectrum of deaf patients in Egypt revealing less GJB2 variants than in many European populations. It underlines the value of targeted enrichment of well-selected deafness genes in combination with MPS in the diagnostics of this frequent and genetically heterogeneous disorder.

18.
Mol Oncol ; 14(6): 1170-1184, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255255

RESUMO

Single-cell transcriptomics have revolutionized our understanding of the cell composition of tumors and allowed us to identify new subtypes of cells. Despite rapid technological advancements, single-cell analysis remains resource-intense hampering the scalability that is required to profile a sufficient number of samples for clinical associations. Therefore, more scalable approaches are needed to understand the contribution of individual cell types to the development and treatment response of solid tumors such as esophageal adenocarcinoma where comprehensive genomic studies have only led to a small number of targeted therapies. Due to the limited treatment options and late diagnosis, esophageal adenocarcinoma has a poor prognosis. Understanding the interaction between and dysfunction of individual cell populations provides an opportunity for the development of new interventions. In an attempt to address the technological and clinical needs, we developed a protocol for the separation of esophageal carcinoma tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibroblasts (two out of PDGFRα, CD90, anti-fibroblast) by fluorescence-activated cell sorting and subsequent RNA sequencing. We confirm successful separation of the three cell populations by mapping their transcriptomic profiles to reference cell lineage expression data. Gene-level analysis further supports the isolation of individual cell populations with high expression of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1 for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts. As a proof of concept, we profiled tumor samples of nine patients and explored expression differences in the three cell populations between tumor and normal tissue. Interestingly, we found that angiogenesis-related genes were upregulated in fibroblasts isolated from tumors compared with normal tissue. Overall, we suggest our protocol as a complementary and more scalable approach compared with single-cell RNA sequencing to investigate associations between clinical parameters and transcriptomic alterations of specific cell populations in esophageal adenocarcinoma.

19.
J Am Soc Nephrol ; 31(4): 716-730, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32111728

RESUMO

BACKGROUND: Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS: To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS: The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS: This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).

20.
JAMA Oncol ; 6(5): 744-748, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163106

RESUMO

Importance: The GeparOcto randomized clinical trial compared the efficacy of 2 neoadjuvant breast cancer (BC) treatment regimens: sequential intense dose-dense epirubicin, paclitaxel, and cyclophosphamide (iddEPC) vs weekly paclitaxel and nonpegylated liposomal doxorubicin (PM) in patients with different biological BC subtypes. Patients with triple-negative BC (TNBC) randomized to the PM arm received additional carboplatin (PMCb). Overall, no difference in pathologic complete response (pCR) rates was observed between study arms. It remained elusive whether the germline variant status of BRCA1/2 and further BC predisposition genes are associated with treatment outcome. Objective: To determine treatment outcome for BC according to germline variant status. Design, Setting, and Participants: This retrospective biomarker study is a secondary analysis of the GeparOcto multicenter prospective randomized clinical trial conducted between December 2014 and June 2016. Genetic analyses assessing for variants in BRCA1/2 and 16 other BC predisposition genes in 914 of 945 women were performed at the Center for Familial Breast and Ovarian Cancer, Cologne, Germany, from August 2017 through December 2018. Main Outcomes and Measures: Proportion of patients who achieved pCR (ypT0/is ypN0 definition) after neoadjuvant treatment according to germline variant status. Results: In the study sample of 914 women with different BC subtypes with a mean (range) age at BC diagnosis of 48 (21-76) years, overall higher pCR rates were observed in patients with BRCA1/2 variants than in patients without (60.4% vs 46.7%; odds ratio [OR], 1.74; 95% CI, 1.13-2.68; P = .01); variants in non-BRCA1/2 BC predisposition genes were not associated with therapy response. Patients with TNBC with BRCA1/2 variants achieved highest pCR rates. In the TNBC subgroup, a positive BRCA1/2 variant status was associated with therapy response in both the PMCb arm (74.3% vs 47.0% without BRCA1/2 variant; OR, 3.26; 95% CI, 1.44-7.39; P = .005) and the iddEPC arm (64.7% vs 45.0%; OR, 2.24; 95% CI, 1.04-4.84; P = .04). A positive BRCA1/2 variant status was also associated with elevated pCR rates in patients with ERBB2-negative, hormone receptor-positive BC (31.8% vs 11.9%; OR, 3.44; 95% CI, 1.22-9.72; P = .02). Conclusions and Relevance: Effective chemotherapy for BRCA1/2-mutated TNBC is commonly suggested to be platinum based. With a pCR rate of 64.7%, iddEPC may also be effective in these patients, though further prospective studies are needed. The elevated pCR rate in BRCA1/2-mutated ERBB2-negative, hormone receptor-positive BC suggests that germline BRCA1/2 testing should be considered prior to treatment start. Trial Registration: ClinicalTrials.gov Identifier: NCT02125344.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA